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15 Subfield-algebraic geometry: What do we mean?

The starting question is:
Question A. What is the foundational concept of algebraic geometry?

Complex and real algebraic geometers agree on the answer: algebraic set

(See, for example, page 1 of the books ‘Algebraic Geometry |. Complex Projective
Varieties' by Mumford and ‘Real Algebraic Geometry' by Bochnak, Coste and Roy)
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Fix any field L and n € N*. Given sets ' < L|[xy,...,%,] and X < L", define
Zi(F):={xel": f(x)=0, Vf e F},
Ir(X) ={feLlxi,...,x,]: f(x) =0, Vx e X}.

The set X < L" is algebraic if X = Z(F) for some F' < L[xy,...,%,]: thisis the

standard concept of algebraic set.
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of those properties of the algebraic sets X < L™ that are determined by the ideal
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Answer A. In simplest terms, algebraic geometry over the given field L is the study

of those properties of the algebraic sets X < L™ that are determined by the ideal
Tr(X) < L|x1,...,%x,].

Some related fundamental concepts of algebraic geometry over L are:

e /Zariski topology of L";
e Algebraic dimension dimy (X ) of algebraic sets X < L";

e Regular and singular points of algebraic sets X < L".

We are mainly interested in the real case in which L is a real closed field, a r.c.f. for

short. For example: L = R and L = @' (the field of real algebraic numbers)

To study the real case, we make extensive use of the complex case in which L is an

algebraically closed field of characteristic zero, an a.c.f. for short. For example: L = C

and L = Q (the field of complex algebraic numbers)
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Consider K|x1,...,%x,]| © L|x1,...,%,|. Given a set X < L", define

T(X):={fe K|xy,....x,] : f(x) =0, Yz e X}.
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Te(X) = Tp(X) A K[z, . . ., %],
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F c K|xyq,...,%,], that is,
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for some F' < K|[x1,...,%,].



Examples. Set L|K := R|Q or C|Q.
o {2} = Zp(x} — 2) = R is Q-algebraic, {v/2} & Zc(x} —2) = Cis not.
e {v/2} © R and {+/2} = C are not Q-algebraic.
o The set X = Zp(x; — v/2x) < R? is Q-algebraic, because X = Zp(x} — 2x3).
e The set X¢ := Z¢(x; — v/2x3) < C? is not, because X¢ & Z¢(x] — 2x3).

e Theset Y := Zr(x; + V2x%5 + {4/§X3) < R? is not Q-algebraic.
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K -algebraic geometry over L, or L| K -algebraic geometry for short?
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Consider again our extension of fields L| K, where L is either an a.c.f. or a r.c.f..

Question B. What do we mean by subfield-algebraic geometry, or better by

K -algebraic geometry over L, or L| K -algebraic geometry for short?

Answer B. L|K -algebraic geometry is the study of those properties of the K -algebraic
sets X < L" that are determined by the ideal Ty (X) < K|x1,...,%,].

Thus, the L|L-algebraic geometry is the standard algebraic geometry over L.

Consistently with the standard L|L-case, is it possible to profitably define some basic

concepts such as the following? YES

e K -Zariski topology of L";
e K -algebraic dimension dimg(X) of K-algebraic sets X < L";

e [ -regular and K-singular points of K-algebraic sets X < L".



Our main goal is to study the geometry of K-algebraic sets X < L" when

L is a r.c.f. and K is not. This L|K-algebraic geometry is rich in new phenomena.

The main example to keep in mind is L|K = R|Q, where R is an arbitrary r.c.f,
eg., L|IK =R|Q and L|K = Q |Q.




23 Foundational concepts and results

Let L|K be any extension of fields.

K-Zariski topology of L"

o X c L"is K-algebraic if X = Z(F') for some F' < K|x1,...,%,].

e The K -Zariski topology 7M1 of L™ is the topology of L™ whose closed sets are the
K -algebraic subsets of L. 7H% is Noetherian.

o A K-algebraic set X < L" is K -irreducible if it is irreducible with respect to 7215

o 711K is Noetherian = every K -algebraic set X < L" has a unique decomposition

in irreducible closed subsets, called K -irreducible components of X < L".

e Given any S c L", we denote by Zcl#.(S) the closure of S with respect to 7%,

called K-Zariski closure of S in L".
If L = K, then Zcl%.(S) is the usual Zariski closure Zcl;«(S) of S in L.



o Zclin(S) < Zell(S) for every S — L". This inclusion can be strict:

ZCIR({\@}) — {\/5} &= {_\/Z \/5} — Zd]%({\/?})-

K-dimension in L"
e Given any S c L", the K-dimension dimg(S) of S (in L") is the Krull dimension
of the ring K|xq,...,%x,|/Zk(5).
o dimy(5) < dimg(S) for every S < L".

e Faltings’ theorem == there exist extensions L|Q and Q-algebraic sets X < L?
such that dimy(X) = 0 and dimg(X) = 1.

e (Subfield-dimension invariance thm) If L is either an a.c.f. or a r.c.f. and X < L"
is any K -algebraic set, then dimz(X) = dimg(X).

In this situation, we simply write dim(X) := dimz(X) = dimg(X).



Notation. From now on:

e 1} is a real closed field,

e /{ is an ordered subfield of R, endowed with the ordering induced by that of R,
e C := R[i] is the algebraic closure of R, where i := /—1,

o K is the algebraic closure of K in R, i.e., the real closure of K.

e K is the algebraic closure of K, i.e., K = Fr[i],

o K[x|:= K|[x1,...,%,] for short.

The main examples: C|R|K = C|R|Q or QQ'|Q



Galois completion and K-bad set

Galois completion. Let GG be the Galois group G(C': K).

For each ¢ € G, define the isomorphism (of Q-vector spaces) ¢, : C" — C" and the
ring automorphism {D\  Clxy, .. %] = Clxq, ..., %] by

zgn(zl, o) = (U(2), .0 (z)),
w(ZV OJVXV) = Zy w(au)X”-

Let Y < R" be a K -algebraic set and let Z := Zclon(Y) be its complexification.

Definition. We define the (real) Galois completion T" of Y < R" (w.r.t. C'|K) by

T = Upec(¥n(Z) n R").



Galois completion algorithm/theorem

(1) Choose generators gy, . .., g, of Z+(Y) in K [x], so Z = Zc(g1, .-, Gr).

(2) Choose a finite Galois subextension E|K of K|K that contains all the coefficients
of the polynomials g1, ..., g, and set G' := G(E : K).

(3) For each o € G, define Z7 := Z¢(g7,...,97) = C", where g7 := > o(a,)x” if
gj = 2., a,x".

(4)T" =,ccr(Z7 n R™) is the Galois completion of Y < R".
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Galois completion algorithm/theorem

(1) Choose generators gy, . .., g, of Z+(Y) in K [x], s0 Z = Zc(g1,. .-, Gr).

(2) Choose a finite Galois subextension E|K of K|K that contains all the coefficients
of the polynomials g1, ..., g, and set G' := G(E : K).

(3) For each o € G, define Z7 := Z¢(g7,...,97) = C", where g7 := > o(a,)x” if
gj = 2 wx’.

(4) T" = | J,ccr(Z7 N R") is the Galois completion of Y < R".

(5) T = Zclis(Y) and dim(Z7 n R"*) < dim(Y') = dim(T™) for each o € G".

(6) Let 5 < E|x]| be the set of all products of the form || _. h,, where h, €
{g7,...,9%} for each 0 € G'. For each h € $), define

Pu(t) = [T (6 — 1) = 60+ 3 (~ gyt € K[x, . ][t

where d is the order of G'. Set & = {qi;}neq, jeq1,..ay © K[x1, ..., %],

.....

() Zx(T") = Z(Y) = A/BK|[x1,...,%,]. In particular, T" = Zp(&).




Example. Let g := x1 + /2%y + v/2x3 € @T[Xl,Xg,Xg] and let Y := Zg(g) < R°.
Apply the Galois completion algorithm:

(1) Choose the generator g of 7 (V') and set Z := Zcles(Y) = Z¢(g) © C°.

(2) Consider the Galois extension F := Q(v/2,1)|Q and set G’ :== G(E : Q) = Dj.
We have: G’ = {0u}acio.12310ei0.11, Tap(V2) = 1%V2 and ogp(1) = (—1)"1.
(3) Set: Xy =2Z""AR*=Y,
X, =2AR = {zeR®: z1 —2xy = 0,23 = 0},
Xy =772 AR = {$€R32$1+\/§CE2—%$3 = 0},
X5:=2" nR* = X;.

(4) Define X := Xy u X7 u Xy u X3
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Example. Let g := x1 + /2%y + v/2x3 € @T[Xl,Xg,Xg] and let Y := Zg(g) < R°.
Apply the Galois completion algorithm:

(1) Choose the generator g of 7 (V') and set Z := Zcles(Y) = Z¢(g) © C°.

(2) Consider the Galois extension F := Q(v/2,1)|Q and set G’ :== G(E : Q) = Dj.
We have: G’ = {0u}acio.12310ei0.11, Tap(V2) = 1%V2 and ogp(1) = (—1)"1.
(3) Set: Xy =2Z""AR*=Y,
X, =2AR = {zeR®: z1 —2xy = 0,23 = 0},
Xy =772 AR = {$€R32$1+\/§CE2—%$3 = 0},
X5:=2" nR* = X;.

(4) Define X = Xy u X; U Xy. Thus, T" := X is the Galois completion of Y < R*.

(5) X = ch%?,(Y) is a Q-irreducible Q-algebraic set of dimension 2 such that
Ir(X) = (H2=0 g°®) = (x] — 4x3x5 + 8x1x9%3 + 4x5 — 2x3)



Figure 1: The Galois completion X of Y and its three R-irreducible components: the planes X, X, and
the line X; of R3. The set X < R? coincides with the Q-Zariski closure of Y and is Q-irreducible.



Example. Let ¢ := x; + V2% + v/2x3 and p := x; + V2x9 + x3 in @T[Xl,Xg,X:g].
Define W := Zg(p) and apply the Galois completion algorithm to Y U W = Zg(gp):

Uy

X3

W =10

X9

Ui

Figure 2: The Galois completion U of W = U on the left and the Galois completion S of Y UWW = X uU|
on the right. The set S < R? is Q-algebraic, has X = Xy u X; U X5 and U = Uy u U; as Q-irreducible

components and the four planes X, X5, Uy and U; as R-irreducible components.



K-bad set. Let X © R" be a K-algebraic set of dimension d.

Suppose X < R is K-irreducible. Choose a K -irreducible component Y of X of
dimension d and define Z := Zclen(Y') < C™. We have:

T =,.(Z27 A R") = X.

Let G'* be the subset of G’ of all o such that dim(Z° n R") < d. We define the
K-bad set B (X) of X as follows:

Br(X) = ,.cn(Z° A RY).



K-bad set. Let X © R" be a K-algebraic set of dimension d.

Suppose X < R is K-irreducible. Choose a K -irreducible component Y of X of
dimension d and define Z := Zclen(Y') < C™. We have:

T =,.(Z27 A R") = X.

Let G'* be the subset of G’ of all o such that dim(Z° n R") < d. We define the
K-bad set B (X) of X as follows:

Br(X) = ,.cn(Z° A RY).

Remark. In this K-irreducible case, we can prove that {Z%},c¢ is the family (with
possible repetitions) of all the C-irreducible components of Zcl.(X) < C™.
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Suppose X < R" is K-reducible. Let X;,..., X, be the K-irreducible components
of X and let I be the set of indices i € {1, ..., s} such that dim(X;) = d. We define
the K -bad set By (X) of X as follows:

BK(X) = Uz’e[ BK(XZ) - Uz’e{l ..... sP\J X;.




K-bad set. Let X © R" be a K-algebraic set of dimension d.

Suppose X < R is K-irreducible. Choose a K -irreducible component Y of X of
dimension d and define Z := Zclen(Y') < C™. We have:

T = J,.c(2° 0 R") = X.
Let G'* be the subset of G’ of all o such that dim(Z° n R") < d. We define the
K-bad set B (X) of X as follows:

Br(X) = ,.cn(Z° A RY).

Suppose X < R" is K-reducible. Let X;,..., X, be the K-irreducible components
of X and let I be the set of indices i € {1, ..., s} such that dim(X;) = d. We define
the K -bad set By (X) of X as follows:

BK(X) = Uz’e] BK(XZ) - Uz’e{l ..... sP\J X;.

Remark. By (X) is always empty if K is a real closed field.



Example.
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Xy = Bo(X) *

Figure 3: Bg(X) = Bg(S) = Xi

Example. If X := Zr(x; — v/2x2) = Zr(x} — 2x3) = R?, then Bg(X) = {(0,0)}.



Regular and singular points. For short, define R[x] := R|[x1,...,%,].

Let X < R" be a K-algebraic set of dimension d, let a = (aq,...,a,) € X and let

n, be the maximal ideal (x; — a4,...,x%, — a,) of R|x].

Definition. We define the K-local ring Rﬁg?a of X at a as

R¥.a = Rlx]n,/(Zk(X) R[x]n,)-

Remark. R%a is the usual local ring R, of the algebraic set X < R".
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n, be the maximal ideal (x; — a4,...,x%, — a,) of R|x].

Definition. We define the K-local ring Rﬁg?a of X at a as

R¥.a = Rlx]n,/(Zk(X) R[x]n,)-

Remark. R%a is the usual local ring R, of the algebraic set X < R".

Definition. a is a K-regular point of X if R?a is a regular local ring of dimension d.
If not, a is said to be a K -singular point of X. We denote by RegK(X) the set of all
K-regular points of X and Sing” (X)) the set of all K-singular points of X

Remark. Reg”(X) is the usual regular locus Reg(X) and Sing”(X) is the usual
singular locus Sing(X') of the algebraic set X < R".



Regular and singular points. For short, define R[x] := R|[x1,...,%,].

Let X < R" be a K-algebraic set of dimension d, let a = (aq,...,a,) € X and let

n, be the maximal ideal (x; — a4,...,x%, — a,) of R|x].

Definition. We define the K-local ring Rﬁg?a of X at a as

R¥.a = Rlx]n,/(Zk(X) R[x]n,)-

Remark. R%a is the usual local ring R, of the algebraic set X < R".

Definition. a is a K-regular point of X if R?a is a regular local ring of dimension d.
If not, a is said to be a K -singular point of X. We denote by RegK(X) the set of all
K-regular points of X and Sing” (X)) the set of all K-singular points of X

Remark. Reg”(X) is the usual regular locus Reg(X) and Sing”(X) is the usual
singular locus Sing(X') of the algebraic set X < R".

Example. If X = Zp(x; — V/2x) = Zrp(x} — 2x3) = R? then Sing(X) = & and
Sing®(X) = {(0,0)}.



Theorem (Jacobian criterion). Let X — R" be a K-algebraic set, let d := dim(X)
and let a € X. Then a is a K-regular point of X if and only if there exist f1,..., f,_q €
Tk (X) and an Euclidean open neighborhood U of a in R" such that

tk(52@) iy g jr =1 —d and X 0 U = Zg(fi,..., fa-a) 0 U.



Theorem (Jacobian criterion). Let X — R" be a K-algebraic set, let d := dim(X)
and let a € X. Then a is a K-regular point of X if and only if there exist f1,..., f,_q €
Tk (X) and an Euclidean open neighborhood U of a in R" such that

rk(g;{j(a»zﬂ

=n—d and X nU = Zg(f1,..., fua)nU.

.....

Theorem (Structure theorem). Let X < R" be a K-algebraic set of dimension d:

(1) @ € Reg” (X) if and only if a belongs to a unique K-irreducible component X' of
X of dimension d and a € Reg" (X").

(2) Sing™ (X) is a K-algebraic subset of R" of dimension < d. Thus, Reg” (X) is a
proper K -Zariski open subset of X.

(3) If X is K-irreducible and {g1,...,9s} is a system of generators of Zy(X) in
K|x1,...,%,], then

Sing" (X) = {ae X : rk(gg? (@), . PRI d}.

X;N 2=l ,




Theorem (Comparison theorem). Let X < R" be a K-algebraic set of dimension d.
We have:

(1) Sing(X) and By (X) are K -algebraic subsets of R" of dimension < d, and
Sing™ (X) = Sing(X) u Bg(X).
(2) Reg(X) is a non-empty K -Zariski open subset of X and
Reg" (X) = Reg(X)\Br (X).



Theorem (Comparison theorem). Let X < R" be a K-algebraic set of dimension d.
We have:

(1) Sing(X) and By (X) are K -algebraic subsets of R" of dimension < d, and
Sing™ (X) = Sing(X) u Bg(X).
(2) Reg(X) is a non-empty K -Zariski open subset of X and
Reg" (X) = Reg(X)\Br (X).

Example. If X = Zp(x; — V/2x) = Zr(x} — 2x3) < R?, then
Sing(X) =@,  Bo(X) ={(0,0)},  Sing*(X) = {(0,0)}.



Example. If g := x; + V2% + v/2x3, X = Zr(g) c R¥and X := ZCI%(XO), then

X3

Sing(X)=X,ur,  Bp(X)=X;, Sing%X)=X urn.



Example. If p = x; + 2%y + %3, Uy := Zr(p) c R® and S := Zd%g(Xo u Uy):




33 A problem of Wiestaw on stratifications

Recall that R is a real closed field and K is an ordered subfield of R, e.g., R|K = R|Q.

During the Spanish-Polish Mathematical Meeting held in 2023 in £6dz, we presented a
first draft of this paper. On that occasion, Wiestaw formulated the following problem

consisting of two questions:

(1) Is there a notion of stratification for K -algebraic subsets of R" that is natural in

the context of R|K -algebraic geometry?

(2) Is it true that every K -algebraic subset of R" admits such a stratification that is
Whitney regular?

| present below an affirmative solution to this problem.



Definition. Let S be a subset of R".

o We say that S is a K -semialgebraic set if S = |J;_(|;_1{x € R" : fij *i; 0} for
some S,71,...,7s € N', fij € K|x1,...,%,] and #;; € {>,=}.

e Suppose S is K-semialgebraic. We say that S is K -semialgebraically connected if
there do not exist two K -semialgebraic sets (| < R" and Cy < R" such that C}
and (5 are disjoint proper closed subsets of S and C; U Cy = S.

Remark. Let S — R" be a K-semialgebraic set. The semialgebraically connected
components of S, viewed as a usual semialgebraic set, are K -semialgebraic in R".
In particular, S is K -semialgebraically connected if and only if it is semialgebraically

connected. This was proved by Heintz, Roy and Solerné in 1994.



Definition. (a la Whitney) Let M be a subset of R". We say that M < R" is a
K -algebraic partial manifold of dimension m it M is K-semialgebraic and either M
is open in R" or there exists m € {0,...,n — 1} with the following property: for
every p € M, there exist f1,..., fu_m € Zx(M) and an open neighborhood U of p
in R" such that the gradients V fi(p), ..., Vf,_m(p) are linearly independent in R"
and M nU = Zr(f1,..., fam) N U.

Remark. Let M/ — R" be a K-semialgebraic set and let My = Zcl%,(M). The

following assertions are equivalent:

e Ml — R"is a K-algebraic partial manifold.
e M is an open subset of the K -nonsingular locus Reg™ (M) of My

e There exists a K -algebraic set X — R" such that M is an open subset of Reg™ (X).



Remark. Every K-algebraic set X © R can be written as a finite disjoint union of
K-algebraic partial submanifolds of R". The reason is that SingK(X) is K -algebraic
in R" and of dimension < dim(X).

Definition. Let S © R" be a K-semialgebraic set. A K -algebraic stratification of S
is a finite partition {M;},c;r of S with the following two properties:

(i) Each M; c R" is a K-semialgebraically connected K-algebraic partial manifold.

(ii) If M; N Clge(M;) # & for some i, j € I with ¢ # 7, then M; < Clga(M;).

Remark. We say that a set M < R" is a K-Nash manifold if it is both a Nash

manifold (in the usual semialgebraic sense) and a K-semialgebraic set.

Evidently, a K-algebraic partial manifold is a K'-Nash manifold. The converse is false,
eg., M = {y’ —2°(1 +2°) = 0} ¢ R*.

An R-algebraic stratification of a semialgebraic set S — R" is a usual semialgebraic

stratification of .S (with Nash strata). The converse is true up to refinements.



Theorem. Every K -semialgebraic set S — R" admits a Whitney regular K -algebraic
stratification { M;};c;.

In addition if {5} en is any finite family of K -semialgebraic subsets of R" contained
in S then we can assume that {M;},c; is compatible with {S)}ch.

Examples. Let R|K = R|Q.

(1) Let X be the Q-algebraic line {z—~/2y = 0} = {23—2y% = 0} of R%. Then {X} is
a Whitney regular R-algebraic stratification, but it is not a (Q-algebraic stratification
because Sing?(X) = {(0,0)}. If Xy := X n {+z > 0} and Xj := {(0,0)}, then
{X ., X, Xo} is a Whitney regular Q-algebraic stratification.



(2) Let W be the Q-algebraic Whitney umbrella defined by
W= {y? —v2z2? = 0} = {y® — 22%2° = 0} < R?.

Define Wy =W n{tx >0}, Z =W n{z =0} = {x =y = 0} = Sing(W),
Zy =2 n{ftz>0}and Zy:= {(0,0,0)}. The partition {W,. W_ Z, Z  Zy}
is a Whitney regular R-algebraic stratification of 1V, but it is not a (Q-algebraic

stratification:

Bo(W)={y*=z22*=0} = Z U X, where X := {y = 2 = 0}, so
Sing®(W) = Sing(W) U Bo(W) = Z U X.
Define W, .= W n{£x >0, £y > 0} and X, := X n {£z > 0}.

The refinement (W, W, W_,. W__ X, X | Z, 7 ,Zy} is now a Whitney
regular Q-algebraic stratification of V.



Thank you for your attention!



