Ambient Lipschitz geometry of definable surface germs

Lev Birbrair

UFC, Fortaleza, Brazil and Jagiellonean University, Krakow, Poland

Tame Geometry and Extensions of Functions - Pawlucki 70

June 23-27, 2025

A connected definable set $X \subset \mathbb{R}^n$ inherits two metrics: the **outer metric** dist(x,y) = |y-x| and the **inner metric** idist(x,y) = length of the shortest path in X connecting x and y. X is **normally embedded or LNE(modern terminology)** if these two metrics on X are equivalent.

A surface germ X is a closed two-dimensional germ at $\mathbf{0} \in \mathbb{R}^n$ definable in a polynomially bounded o-minimal structure with the field of exponents \mathbb{F} .

Surface germs X and Y are **outer (inner) Lipschitz equivalent** if there is an outer (inner) bi-Lipschitz homeomorphism $X \to Y$.

The germs are called ambient Lipschitz equivalent if there exists a germ of a bi-Lipschitz Homeomorphism $\Psi: \mathbb{R}^n \to \mathbb{R}^n$ such that $\Psi(X) = Y$.

(The germs are called ambient Lipschitz equivalent if there exists a germ of a bi-Lipschitz Homeomorphism $\Phi: \mathbb{R}^n \to \mathbb{R}^n$ such that $\Phi(X) = Y$.)

Finiteness theorems (Mostowski 85, Parusinski 94, Valette 05): Any definable family has finitely many outer Lipschitz equivalence classes.

For $\beta \in \mathbb{F}_{\geq 1}$, the **standard** β -Hölder triangle is the surface germ $T_{\beta} = \{(x,y) \in \mathbb{R}^2 \mid x \geq 0, \ 0 \leq y \leq x^{\beta}\}.$

The **standard** β -horn is $C_{\beta} = \{(x, y, z) \in \mathbb{R}^3 \mid z \geq 0, \ x^2 + y^2 = z^{2\beta}\}.$

A β -Hölder triangle is a germ inner Lipschitz equivalent to T_{β} .

A β -horn is a germ inner Lipschitz equivalent to C_{β} .

First Question

Are Topologically equivalent and Outer Lipschitz Equivalent germs Ambient Equivalent?

Answer: No!

Examples (LB, A. Gabrielov):

Universality Theorem (LB, Brandenbursky, Gabrielov)

For any knot K, one can construct a germ of a surface X_K in \mathbb{R}^4 such that:

- 1. The link at the origin of X_K is a trivial knot;
- 2. The germs X_K are outer bi-Lipschitz equivalent for all K;
- 3. Two germs X_K and $X_{K'}$ are ambient bi-Lipschitz equivalent only if the knots K and K' are isotopic.

But, Notice in these examples X is **not!** LNE.

Natural question.

What about LNE surfaces?

"Conjecture": Two LNE surface germs are Ambient Lipschitz Equivalent if they are Topologically Equivalent and Outer Lipschitz Equivalent.

Actually the conjecture is true for surface germs in \mathbb{R}^3 with isolated singularities with connected links.

Theorem - combination (LB, D. Lopes Medeiros) and (LB, A. Fernandes, Z. Jelonek)

For any $\beta \in \mathbb{F}_{\geq 1}$, $n \in \mathbb{N}_{\geq 3}$ with $n \neq 4$, every LNE β -Hölder triangle $T \subset \mathbb{R}^n$ is ambient Lipschitz equivalent to the standard β -Hölder triangle in \mathbb{R}^n and every LNE β -horn $H \subset \mathbb{R}^n$ is ambient Lipschitz equivalent to the standard β -horn $H \subset \mathbb{R}^n$.

Theorem 1 (LB, D. Lopes Medeiros) Let $X \subset \mathbb{R}^3$ be a germ of a LNE β -Hölder triangle or a germ of LNE β -horn $H \subset \mathbb{R}^3$. Then X is ambient Lipschitz equivalent to the standard β -Hölder triangle in \mathbb{R}^n and every LNE β -horn $H \subset \mathbb{R}^3$ is ambient Lipschitz equivalent to the standard β -horn $H \subset \mathbb{R}^3$.

This result is not true for non-isolated singularities of for the surfaces with not connected link.

Theorem 2 (LB, A. Fernandes, Z. Jelonek)

Let $X, Y \subset \mathbb{R}^{k+1}$ be germs of a definable sets, dim(X) = dim(Y) = k. Suppose that X and Y are outer Lipschitz equivalent. Then they are ambient Lipschitz equivalent.

What about germs in \mathbb{R}^4 ? LNE Hölder triangles.

Universality Theorem 2 (LB, M.Denkowski, D Lopes Medeiros, E. Sampaio)

Fix $\beta \in \mathbb{F}_{>1}$. Then for any knot K, there exists an LNE Hölder triangle $T_{\beta,K} \subset \mathbb{R}^4$. Moreover, two triangles T_{β,K_1} and T_{β,K_2} of that kind are ambient bi-Lipschitz equivalent only if K_1 and K_2 are isotopic.

Next Question Ambient Lipschitz Classification of LNE Hölder triangles in \mathbb{R}^4 .

What can happend?

Notice. All the vanishing exponents are rational.

The invariant graph Γ for a Hölder triangle in \mathbb{R}^4 is constructed as follows:

The vertex v_o correspond to the triangle.

The vertices $v_1{}^i$ correspond to the "primary" micro-knots $K_1{}^i$.

Each edge correspond to primary exponent.

The vertices v_2^i correspond to the "secondary" micro-knots K_2^i .

The indices $\beta_j{}^i$ correspond to the micro-knot exponents.

Thank You.

Congratulations, Wiesław!