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Semialgebraic setting:

Let Ω be a Nash manifold (i.e., an analytic submanifold Ω ⊂ Rn,
which is a semialgebraic set).

Definition
A set X ⊂ Ω is arc-symmetric when, for every analytic arc
γ : I → Ω, if Int(γ−1(X )) ̸= ∅ then γ(I) ⊂ X.

Definition
A function f : X → R is arc-analytic when f ◦ γ is analytic for
every analytic arc γ : I → X.
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Example 1.

f (x , y) =

{
x3

x2+y2 , x2 + y2 ̸= 0

0 , x2 + y2 = 0

f is arc-analytic on R2, because f becomes analytic after
composition with the blow-up of (0,0) in R2. [Bierstone-Milman,
1990] But f is only of class C0.

The graph of f is the two-dimensional part of the Cartan
umbrella:

Example 2. The set

X = {z(x2 + y2) = x3} \ {x2 + y2 = 0, z ̸= 0}

is arc-symmetric (as the zero locus of an arc-analytic function).
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Example 3.

f (x , y) =
√

x4 + y4

f is arc-analytic on R2, because f becomes analytic after
composition with the blow-up of (0,0) in R2.
But f is only of class C1.

Example 4.

f (x , y , z,w) =


x4

x2+y2
√

w4+z4
, outside y−axis and (z,w)−plane

0 , otherwise

f is arc-analytic as a quotient of two arc-analytic functions, that
extends continuously to R4 (i.e., f is arc-meromorphous on R4).
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Theorem (Kurdyka, 1988)
The semialgebraic arc-symmetric sets are precisely the closed
sets of a certain Noetherian topology in Ω, called AR topology.

Basic properties:
AR-closed sets are Euclidean closed (Curve Selection
Lemma)
Algebraic and Nash sets are AR-closed
AR-closure of a semialgebraic set preserves dimension
Noetherianity gives irreducibility and irreducible comp’s
Finer than Zariski topology (vide Cartan umbrella).
In fact, AR topology is the finest among ‘natural’
Noetherian topologies containing Zariski topology (i.e.,
AR, Nash, and regulous).
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Less basic properties:

AR-Krull dimension is equal to the topological dimension
(since a proper AR-closed subset Y of an AR-irreducible
X satisfies dimY < dimX )
Identity Principle: If X ∈ AR(Ω) is AR-irreducible and
f ∈ Aa(X ) vanishes on a nonempty open subset of X , then
f ≡ 0.

Theorem (A.-Seyedinejad, 2017)

For every AR-closed set X ⊂ Ω there exists f ∈ Aa(Ω) such
that X = f−1(0).

Corollary (Nullstellensatz)

(i) For every AR-closed X ⊂ Ω, V(I(X )) = X.
(ii) For every ideal I in Aa(Ω), I(V(I)) = Rad(I).
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Globally subanalytic AR topology
C-semianalytic arc-symmetric sets

Definition
Let n ≥ 1 and let vn : Rn → Rn denote the semialgebraic map

(x1, . . . , xn) 7→

 x1√
1 + x2

1

, . . . ,
xn√

1 + x2
n

 .

A set X ⊂ Rn is called globally subanalytic, when vn(X ) is
subanalytic in Rn.

Since vn is an analytic isomorphism onto the bounded open set
(−1,1)n, it follows that globally subanalytic sets are
subanalytic.
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Globally subanalytic AR topology
C-semianalytic arc-symmetric sets

Subanalytic setting:

Let Ω be a connected real analytic submanifold in Rn.
Denote by AR(Ω) the family of arc-symmetric subsets of Ω that
are globally subanalytic as subsets of Rn.

Theorem
Let Ω be globally subanalytic. There exists a Noetherian
topology on Ω, whose closed sets are precisely the elements of
AR(Ω).

Basic properties:
AR-closed sets are Euclidean closed (Curve Selection
Lemma)
Semialgebraic arc-symmetric sets are AR-closed
Globally subanalytic real analytic sets are AR-closed
Noetherianity gives irreducibility and irreducible comp’s
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Globally subanalytic real analytic sets are AR-closed

Noetherianity gives irreducibility and irreducible comp’s
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Big problem:

AR-closure does not preserve the dimension.

Example 5. Let S = {(x , y) ∈ R2 : y = sin x ,−1 ≤ x ≤ 1}.

Then, S is globally subanalytic in R2 as a bounded subanalytic
set, but any arc-symmetric set in R2 containing S must contain
the whole graph of the sine function as well. Thus, S

AR
= R2.
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Let Ω be a real analytic manifold, and let Ω∗ be its
complexification.

A set R ⊂ Ω is called C-analytic, when there
exists an open neighbourhood V ∗ of Ω in Ω∗ and a complex
analytic set Z in V ∗ such that Z ∩ Ω = R.

By Cartan, Whitney and Bruhat, R is C-analytic iff R = f−1(0)
for some f ∈ A (Ω).
Following [Acquistapace et al., 2016], we say that a set X ⊂ Ω
is C-semianalytic, when X is a union of a locally finite family of
global basic semianalytic subsets of Ω, that is, sets of the form
{f = 0,g1 > 0, . . . ,gs > 0}, where f ,gj ∈ A (Ω).

Definition
Let ARC(Ω) denote the family of C-semianalytic sets X ⊂ Ω
such that X is arc-symmetric in Ω and globally subanalytic as a
subset of Rn.
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Globally subanalytic AR topology
C-semianalytic arc-symmetric sets

Theorem
Let Ω be globally subanalytic. There exists a Noetherian
topology on Ω, whose closed sets are precisely the elements of
ARC(Ω).

From now on assume that Ω is relatively compact.
Then, C-analytic subsets of Ω are ARC-closed.

We can recover Kurdyka’s description of arc-symmetric sets in
terms of connected components of desingularization:
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Theorem
Let X ∈ ARC(Ω) be an ARC-irreducible set of dimension
k > 0, and let R ⊂ Ω be its C-analytic closure. Let π : R̃ → R
be a desingularization of R. Then, there exists a unique
connected component Ẽ of R̃ of dimension k, such that

Regk (X ) ⊂ π(Ẽ) ⊂ X .

Proposition

Let X ,Y ∈ ARC(Ω), Y ⊊ X, and suppose that X is
ARC-irreducible of dimension k > 0. Then, dimY < dimX.

Corollary
The ARC-Krull dimension of an ARC-closed set is equal to its
topological dimension.
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Zero-set theorems
Proof of Theorem 1
Conjecture

Theorem 1
Let X ∈ ARC(Ω). Then, there exists a globally subanalytic
arc-symmetric function f : Ω → R, such that X = f−1(0).

Theorem 2
Let X ∈ AR(Ω) be a Nash subanalytic set. Then, there exists a
continuous globally subanalytic function f : Ω → R and a
simple normal crossings divisor Σ ⊂ Ω, such that

(i) dimx Σ ∩ X < dimx X, for all x ∈ X
(ii) f is arc-analytic on Ω \ Σ, and
(iii) X = f−1(0).
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Proof of Theorem 1:

Induction on k = dimX

1) When k = 0, not much to do
2) Assume k ≥ 1 and X is ARC-irreducible

X
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X

R = XCan

S⊃ Sing(R)
dimS < k

D̃ = π−1(S)

Ẽ

R̃

Z
Z
ZZ~

π

π : Ω̃ → Ω embedded
desing. of R

π(Ẽ) ⊃ Regk(X)

sZ

D̂

σ−1(Z)

Ê

�
�
��>σ

σ : Ω̂ → Ω̃

blow-up of Ω̃ at Z

Ê = strict tr. of Ẽ
D̂ = strict tr. of D̃

φ, v ∈ A (Ω̂) such that φ, v ≥ 0
φ|Ê ≡ 0, φ|D̂ ≡ 1, v−1(0) = Ê ∪ D̂
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π(Ẽ) ⊃ Regk(X)

sZ

D̂

σ−1(Z)

Ê
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X

R = XCan

s h−1(0)=X∩S

h∈Aa(Ω)

S⊃ Sing(R)
dimS < k

D̃ = π−1(S)

Ẽ

R̃

Z
Z
ZZ~

π

sZ

D̂

σ−1(Z)

Ê

�
�
��>σ

φ, v ∈ A (Ω̂) such that φ, v ≥ 0
φ|Ê ≡ 0, φ|D̂ ≡ 1, v−1(0) = Ê ∪ D̂

f̂ := ((φ · (h ◦ π ◦ σ))2 + v2

· f̂∈Aa(Ω̂)

· f̂=(h◦π◦σ)2 on D̂

· f̂=0 on Ê

· f̂ ̸=0 outside Ê∪D̂

f̃ := (̂f ◦ σ−1)·(h ◦ π)
outside Z, and 0 on Z

f := f̃ ◦ π−1 outside S

f := h3 on S
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φ|Ê ≡ 0, φ|D̂ ≡ 1, v−1(0) = Ê ∪ D̂
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· f̂ ̸=0 outside Ê∪D̂
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X

R = XCan
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D̃ = π−1(S)

Ẽ

R̃

Z
Z
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π
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��>σ
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f̃ : Ω̃ → R is arc-analytic:

Pick γ̃ : I → Ω̃ analytic. Let γ̂ : I → Ω̂ be its lifting by σ, so that
σ ◦ γ̂ = γ̃. We claim that

f̃ ◦ γ̃ = (̂f ◦ γ̂) · (h ◦ π ◦ γ̃) , (1)

which implies that f̃ ◦ γ̃ is analytic.

Indeed, if γ̃(t) /∈ Z , then (1) holds because

(̂f ◦ σ−1 ◦ γ̃)(t) = (̂f ◦ σ−1 ◦ σ ◦ γ̂)(t) = (̂f ◦ γ̂)(t).

If, in turn, γ̃(t) ∈ Z , then (h ◦ π ◦ γ̃)(t) = 0, by definition of h,
and hence both sides of (1) are equal to zero.
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f : Ω → R is arc-analytic:

Pick γ : I → Ω analytic. Let γ̃ : I → Ω̃ and γ̂ : I → Ω̂ be such that
π ◦ γ̃ = γ and σ ◦ γ̂ = γ̃. We claim that

f ◦ γ = f̃ ◦ γ̃ , (2)

which implies that f ◦ γ is analytic. Indeed, if γ(t) ̸∈ S, then (2)
holds because (̃f ◦ π−1 ◦ γ)(t) = (̃f ◦ π−1 ◦ π ◦ γ̃)(t) = (̃f ◦ γ̃)(t).
If, in turn, γ(t) ∈ S ∩ π(Ẽ), then h(γ(t)) = 0 and hence
(f ◦ γ)(t) = 0. But γ̃(t) ∈ Z , and hence (̃f ◦ γ̃)(t) = 0 as well.
Finally, if γ(t) ∈ S \ π(Ẽ), then γ̃(t) /∈ Z and γ̂(t) ∈ D̂; hence, by
(1), we have

(̃f◦γ̃)(t) = ((̂f◦γ̂)·(h◦π◦γ̃))(t) =
(
((h ◦ π ◦ σ)2 ◦ γ̂) · (h ◦ π ◦ γ̃)

)
(t)

=
(
(h ◦ π ◦ γ̃)2 · (h ◦ π ◦ γ̃)

)
(t) = (h ◦ γ)3(t) = (f ◦ γ)(t) .
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We have

f−1(0) = {x ∈ Ω \ S : (̃f ◦ π−1)(x) = 0} ∪ {x ∈ S : h3(x) = 0}

= π(Ẽ \ D̃) ∪ (X ∩ S)

= π(Ẽ) ∪ (X ∩ S)

⊃ Regk (X ) ∪ (X ∩ S).

Since X was assumed ARC-irreducible, f−1(0) is ARC-closed
and dim f−1(0) = dimX , it follows that f−1(0) = X .
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Recall:

Theorem 2
Let X ∈ AR(Ω) be a Nash subanalytic set. Then, there exists a
continuous globally subanalytic function f : Ω → R and a
simple normal crossings divisor Σ ⊂ Ω, such that

(i) dimx Σ ∩ X < dimx X, for all x ∈ X
(ii) f is arc-analytic on Ω \ Σ, and
(iii) X = f−1(0).
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Conjecture
Every arc-symmetric globally subanalytic set is Nash
subanalytic.
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Thank you / Dziękuję!
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