Extension of *k*-regulous functions

Juliusz Banecki

Jagiellonian University, Faculty of Mathematics and Computer Science

Kraków, 2025

By a quasi-affine algebraic variety we mean a Zariski locally closed set $X \subset \mathbb{R}^n$ for some n.

By a quasi-affine algebraic variety we mean a Zariski locally closed set $X \subset \mathbb{R}^n$ for some n. We say that a function $f: X \to \mathbb{R}$ is regular, or write $f \in \mathcal{R}(X)$, if there exist two polynomials $P, Q \in \mathbb{R}[x_1, \dots, x_n]$ such that Q does not vanish at any point of X and $f = \frac{P|_X}{Q|_X}$.

By a quasi-affine algebraic variety we mean a Zariski locally closed set $X \subset \mathbb{R}^n$ for some n. We say that a function $f: X \to \mathbb{R}$ is regular, or write $f \in \mathcal{R}(X)$, if there exist two polynomials $P, Q \in \mathbb{R}[x_1, \dots, x_n]$ such that Q does not vanish at any point of X and $f = \frac{P|_X}{Q|_X}$. We say that X is nonsingular if for every every point $x \in X$ the localisation $\mathcal{R}(X)_{\mathfrak{m}_x}$ is a regular local ring, where \mathfrak{m}_X denotes the maximal ideal of function vanishing at X.

By a quasi-affine algebraic variety we mean a Zariski locally closed set $X \subset \mathbb{R}^n$ for some n. We say that a function $f: X \to \mathbb{R}$ is regular, or write $f \in \mathcal{R}(X)$, if there exist two polynomials $P, Q \in \mathbb{R}[x_1, \dots, x_n]$ such that Q does not vanish at any point of X and $f = \frac{P|_X}{Q|_X}$. We say that X is nonsingular if for every every point $x \in X$ the localisation $\mathcal{R}(X)_{\mathfrak{m}_x}$ is a regular local ring, where \mathfrak{m}_X denotes the maximal ideal of function vanishing at X.

Definition

We say that a function $f: X \to \mathbb{R}$ admits a rational representation, if there exists a Zariski open and dense subset U of X, such that the restriction $f|_U$ is regular.

By a quasi-affine algebraic variety we mean a Zariski locally closed set $X \subset \mathbb{R}^n$ for some n. We say that a function $f: X \to \mathbb{R}$ is regular, or write $f \in \mathcal{R}(X)$, if there exist two polynomials $P, Q \in \mathbb{R}[x_1, \dots, x_n]$ such that Q does not vanish at any point of X and $f = \frac{P|_X}{Q|_X}$. We say that X is nonsingular if for every every point $x \in X$ the localisation $\mathcal{R}(X)_{\mathfrak{m}_x}$ is a regular local ring, where \mathfrak{m}_X denotes the maximal ideal of function vanishing at X.

Definition

We say that a function $f: X \to \mathbb{R}$ admits a rational representation, if there exists a Zariski open and dense subset U of X, such that the restriction $f|_U$ is regular. The ring of real valued functions on X which are of class \mathcal{C}^k and admit rational representations is denoted by $\mathcal{R}_k(X)$.

Examples

Example

For
$$k \ge 0$$
, the function $f(x,y) = \begin{cases} \frac{x^{k+3}}{x^2+y^2} & \text{if } (x,y) \ne (0,0), \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$ belongs to $\mathcal{R}_k(\mathbb{R}^n)$, but it does not belong to $\mathcal{R}_{k+1}(\mathbb{R}^2)$.

Examples

Example

For
$$k \ge 0$$
, the function $f(x,y) = \begin{cases} \frac{x^{k+3}}{x^2 + y^2} & \text{if } (x,y) \ne (0,0), \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$

belongs to $\mathcal{R}_k(\mathbb{R}^n)$, but it does not belong to $\mathcal{R}_{k+1}(\mathbb{R}^2)$.

Example

Consider the Whitey umbrella

$$X = \{(x, y, z) \in \mathbb{R}^3 : x^2 - y^2z = 0\}$$
. Let $f: X \to \mathbb{R}$ be given by

$$f(x, y, z) = \begin{cases} 0 & \text{if } z > 0, \\ e^{-\frac{1}{z^2}} & \text{if } z < 0. \end{cases}$$

Examples

Example

For $k \ge 0$, the function $f(x,y) = \begin{cases} \frac{x^{k+3}}{x^2+y^2} & \text{if } (x,y) \ne (0,0), \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$ belongs to $\mathcal{R}_k(\mathbb{R}^n)$, but it does not belong to $\mathcal{R}_{k+1}(\mathbb{R}^2)$.

Example

Consider the Whitey umbrella

$$X = \{(x, y, z) \in \mathbb{R}^3 : x^2 - y^2z = 0\}$$
. Let $f: X \to \mathbb{R}$ be given by

$$f(x, y, z) = \begin{cases} 0 & \text{if } z > 0, \\ e^{-\frac{1}{z^2}} & \text{if } z < 0. \end{cases}$$

Then $f \in \mathcal{R}_k(X)$ for all $k \ge 0$, but f is not even semialgebraic.

k-regulous functions

Definition

Let $X \subset \mathbb{R}^n$ be an affine variety. A function $f: X \to \mathbb{R}$ is said to be k-regulous, if there exists a function $F \in \mathcal{R}_k(\mathbb{R}^n)$ such that $F|_X = f$. The ring of k-regulous functions on X is denoted by $\mathcal{R}^k(X)$.

k-regulous functions

Definition

Let $X \subset \mathbb{R}^n$ be an affine variety. A function $f: X \to \mathbb{R}$ is said to be k-regulous, if there exists a function $F \in \mathcal{R}_k(\mathbb{R}^n)$ such that $F|_X = f$. The ring of k-regulous functions on X is denoted by $\mathcal{R}^k(X)$.

As seen in the example on the last slide, in general $\mathcal{R}_k(X) \not\subset \mathcal{R}^k(X)$.

k-regulous functions

Definition

Let $X \subset \mathbb{R}^n$ be an affine variety. A function $f: X \to \mathbb{R}$ is said to be k-regulous, if there exists a function $F \in \mathcal{R}_k(\mathbb{R}^n)$ such that $F|_X = f$. The ring of k-regulous functions on X is denoted by $\mathcal{R}^k(X)$.

As seen in the example on the last slide, in general $\mathcal{R}_k(X) \not\subset \mathcal{R}^k(X)$. Fortunately, the other inclusion does hold:

Observation (Kollár, Nowak 2014)

For an affine variety X it holds that $\mathcal{R}^k(X) \subset \mathcal{R}_k(X)$.

Theorem

Let $X \subset \mathbb{R}^n$ be an affine variety and let $f: X \to \mathbb{R}$ be a continuous function. Then, f is 0-regulous if and only if the following holds:

Theorem

Let $X \subset \mathbb{R}^n$ be an affine variety and let $f: X \to \mathbb{R}$ be a continuous function. Then, f is 0-regulous if and only if the following holds:

For every Zariski closed subset $Y \subset X$, the restriction $f|_Y$ admits a rational representation.

Theorem

Let $X \subset \mathbb{R}^n$ be an affine variety and let $f: X \to \mathbb{R}$ be a continuous function. Then, f is 0-regulous if and only if the following holds:

For every Zariski closed subset $Y \subset X$, the restriction $f|_Y$ admits a rational representation.

Moreover, if the condition is satisfied then there exists $F \in \mathcal{R}_0(\mathbb{R}^n)$ such that $F|_X = f$ and $F|_{\mathbb{R}^n \setminus X}$ is regular.

Theorem

Let $X \subset \mathbb{R}^n$ be an affine variety and let $f: X \to \mathbb{R}$ be a continuous function. Then, f is 0-regulous if and only if the following holds:

For every Zariski closed subset $Y \subset X$, the restriction $f|_Y$ admits a rational representation.

Moreover, if the condition is satisfied then there exists $F \in \mathcal{R}_0(\mathbb{R}^n)$ such that $F|_X = f$ and $F|_{\mathbb{R}^n \setminus X}$ is regular.

Corollary 1

Let $X \subset \mathbb{R}^n$ be a nonsingular variety. Then $\mathcal{R}^0(X) = \mathcal{R}_0(X)$.

Theorem

Let $X \subset \mathbb{R}^n$ be an affine variety and let $f: X \to \mathbb{R}$ be a continuous function. Then, f is 0-regulous if and only if the following holds:

For every Zariski closed subset $Y \subset X$, the restriction $f|_Y$ admits a rational representation.

Moreover, if the condition is satisfied then there exists $F \in \mathcal{R}_0(\mathbb{R}^n)$ such that $F|_X = f$ and $F|_{\mathbb{R}^n \setminus X}$ is regular.

Corollary 1

Let $X \subset \mathbb{R}^n$ be a nonsingular variety. Then $\mathcal{R}^0(X) = \mathcal{R}_0(X)$.

Corollary 2

Let $X \subset \mathbb{R}^n$ be a variety of dimension one. Then $\mathcal{R}^0(X) = \mathcal{R}_0(X)$.

What about k > 0?

Fix k > 0.

Question 1

Let $X \subset \mathbb{R}^n$ be a nonsingular variety. Does it follow that $\mathcal{R}^k(X) = \mathcal{R}_k(X)$?

Question 2

Let $X \subset \mathbb{R}^n$ be a variety of dimension one. Does it follow that $\mathcal{R}^k(X) = \mathcal{R}_k(X)$?

Theorem (B., 2025)

Let $X \subset \mathbb{R}^n$ be a nonsingular affine variety and let $k \geq 0$. Then $\mathcal{R}^k(X) = \mathcal{R}_k(X)$.

Theorem (B., 2025)

Let $X \subset \mathbb{R}^n$ be a nonsingular affine variety and let $k \geq 0$. Then $\mathcal{R}^k(X) = \mathcal{R}_k(X)$.

A rough sketch of the proof.

Let $f \in \mathcal{R}_k(X)$.

Theorem (B., 2025)

Let $X \subset \mathbb{R}^n$ be a nonsingular affine variety and let $k \geq 0$. Then $\mathcal{R}^k(X) = \mathcal{R}_k(X)$.

A rough sketch of the proof.

Let $f \in \mathcal{R}_k(X)$. Assume first that there exists a regular retraction $r : \mathbb{R}^n \to X$, i.e. an *n*-tuple $r := (r_1, \dots, r_n)$ of function in $\mathcal{R}(\mathbb{R}^n)$, such that $r(\mathbb{R}^n) = X$ and $r|_{X} = \mathrm{id}_{X}$.

Theorem (B., 2025)

Let $X \subset \mathbb{R}^n$ be a nonsingular affine variety and let $k \geq 0$. Then $\mathcal{R}^k(X) = \mathcal{R}_k(X)$.

A rough sketch of the proof.

Let $f \in \mathcal{R}_k(X)$. Assume first that there exists a regular retraction $r : \mathbb{R}^n \to X$, i.e. an n-tuple $r := (r_1, \ldots, r_n)$ of function in $\mathcal{R}(\mathbb{R}^n)$, such that $r(\mathbb{R}^n) = X$ and $r|_X = \mathrm{id}_X$. Then, we can just take $F := f \circ r$ and we are done.

A rough sketch of the proof.

In general, the best thing that we can say is that there exists a Euclidean neighbourhood U of X in \mathbb{R}^n and a Nash retraction $r:U\to X$. Then $f\circ r$ is a function of class \mathcal{C}^k on U.

A rough sketch of the proof.

In general, the best thing that we can say is that there exists a Euclidean neighbourhood U of X in \mathbb{R}^n and a Nash retraction $r:U\to X$. Then $f\circ r$ is a function of class \mathcal{C}^k on U. Let $Z\subset X$ be a proper algebraic subset of X, such that $f|_{X\setminus Z}$ is regular. Let $P,Q\in\mathbb{R}[x_1,\ldots,x_n]$ be polynomials, such that Q does not vanish at any point of $X\setminus Z$ and $f|_{X\setminus Z}=\frac{P|_{X\setminus Z}}{Q|_{X\setminus Z}}$.

A rough sketch of the proof.

In general, the best thing that we can say is that there exists a Euclidean neighbourhood U of X in \mathbb{R}^n and a Nash retraction $r:U\to X$. Then $f\circ r$ is a function of class \mathcal{C}^k on U. Let $Z\subset X$ be a proper algebraic subset of X, such that $f|_{X\setminus Z}$ is regular. Let $P,Q\in\mathbb{R}[x_1,\ldots,x_n]$ be polynomials, such that Q does not vanish at any point of $X\setminus Z$ and $f|_{X\setminus Z}=\frac{P|_{X\setminus Z}}{Q|_{X\setminus Z}}$. Now, using some algebra, we find a regular mapping $p:\mathbb{R}^n\to\mathbb{R}^n$, which interpolates r on $X\cup r^{-1}(Z)$ up to derivatives of some large order.

A rough sketch of the proof.

In general, the best thing that we can say is that there exists a Euclidean neighbourhood U of X in \mathbb{R}^n and a Nash retraction $r:U\to X$. Then $f\circ r$ is a function of class \mathcal{C}^k on U. Let $Z\subset X$ be a proper algebraic subset of X, such that $f|_{X\setminus Z}$ is regular. Let $P,Q\in\mathbb{R}[x_1,\ldots,x_n]$ be polynomials, such that Q does not vanish at any point of $X\setminus Z$ and $f|_{X\setminus Z}=\frac{P|_{X\setminus Z}}{Q|_{X\setminus Z}}$. Now, using some algebra, we find a regular mapping $p:\mathbb{R}^n\to\mathbb{R}^n$, which interpolates r on $X\cup r^{-1}(Z)$ up to derivatives of some large order. Then, we consider the fraction $\frac{P\circ p}{Q\circ p}$.

A rough sketch of the proof.

In general, the best thing that we can say is that there exists a Euclidean neighbourhood U of X in \mathbb{R}^n and a Nash retraction $r: U \to X$. Then $f \circ r$ is a function of class \mathcal{C}^k on U. Let $Z \subset X$ be a proper algebraic subset of X, such that $f|_{X \setminus Z}$ is regular. Let $P, Q \in \mathbb{R}[x_1, \dots, x_n]$ be polynomials, such that Qdoes not vanish at any point of $X \setminus Z$ and $f|_{X \setminus Z} = \frac{P|_{X \setminus Z}}{Q|_{Y \setminus Z}}$. Now, using some algebra, we find a regular mapping $p: \mathbb{R}^n \to \mathbb{R}^n$, which interpolates r on $X \cup r^{-1}(Z)$ up to derivatives of some large order. Then, we consider the fraction $\frac{P \circ p}{Q \circ p}$. With some effort, we check that $\frac{P \circ p}{Q \circ p} \sim \frac{P \circ r}{Q \circ r}$ extends to a function of class \mathcal{C}^k (at least on a neighbourhood of X).

Fix k > 0, $n \ge m \ge 0$.

Fix $k > 0, n \ge m \ge 0$.

Definition

Let $M \subset \mathbb{R}^n$ be a \mathcal{C}^k -submanifold in \mathbb{R}^n of dimension m.

Fix $k > 0, n \ge m \ge 0$.

Definition

Let $M \subset \mathbb{R}^n$ be a \mathcal{C}^k -submanifold in \mathbb{R}^n of dimension m. We say that X is a k-regulous submanifold of \mathbb{R}^n , if for every point $x \in X$ there exist a neighbourhood $U \subset \mathbb{R}^n$ and a k-regulous mapping $f: \mathbb{R}^n \to \mathbb{R}^{n-m}$, such that $f^{-1}(0) \cap U = M \cap U$ and f is a submersion at x.

Fix $k > 0, n \ge m \ge 0$.

Definition |

Let $M \subset \mathbb{R}^n$ be a \mathcal{C}^k -submanifold in \mathbb{R}^n of dimension m. We say that X is a k-regulous submanifold of \mathbb{R}^n , if for every point $x \in X$ there exist a neighbourhood $U \subset \mathbb{R}^n$ and a k-regulous mapping $f: \mathbb{R}^n \to \mathbb{R}^{n-m}$, such that $f^{-1}(0) \cap U = M \cap U$ and f is a submersion at x.

Observation

Let $X \subset \mathbb{R}^n$ be an affine variety of dimension 1, which is a \mathcal{C}^{k+1} submanifold of \mathbb{R}^n .

Fix $k > 0, n \ge m \ge 0$.

Definition

Let $M \subset \mathbb{R}^n$ be a \mathcal{C}^k -submanifold in \mathbb{R}^n of dimension m. We say that X is a k-regulous submanifold of \mathbb{R}^n , if for every point $x \in X$ there exist a neighbourhood $U \subset \mathbb{R}^n$ and a k-regulous mapping $f: \mathbb{R}^n \to \mathbb{R}^{n-m}$, such that $f^{-1}(0) \cap U = M \cap U$ and f is a submersion at x.

Observation

Let $X \subset \mathbb{R}^n$ be an affine variety of dimension 1, which is a \mathcal{C}^{k+1} submanifold of \mathbb{R}^n . Assume that $\mathcal{R}^k(X) = \mathcal{R}_k(X)$.

Fix $k > 0, n \ge m \ge 0$.

Definition

Let $M \subset \mathbb{R}^n$ be a \mathcal{C}^k -submanifold in \mathbb{R}^n of dimension m. We say that X is a k-regulous submanifold of \mathbb{R}^n , if for every point $x \in X$ there exist a neighbourhood $U \subset \mathbb{R}^n$ and a k-regulous mapping $f: \mathbb{R}^n \to \mathbb{R}^{n-m}$, such that $f^{-1}(0) \cap U = M \cap U$ and f is a submersion at x.

Observation

Let $X \subset \mathbb{R}^n$ be an affine variety of dimension 1, which is a \mathcal{C}^{k+1} submanifold of \mathbb{R}^n . Assume that $\mathcal{R}^k(X) = \mathcal{R}_k(X)$. Then, X must be a k-regulous submanifold of \mathbb{R}^n .

Proof of the proposition

Sketch of the proposition.

For simplicity we only consider the case of n = 2.

Proof of the proposition

Sketch of the proposition.

For simplicity we only consider the case of n=2. Let $x\in X$. After a change of coordinates, we can assume that $x=0\in \mathbb{R}^2$, and that locally X is given as the graph of a function $\varphi:U\to \mathbb{R}$ of class \mathcal{C}^{k+1} , where U is a neighbourhood of zero in \mathbb{R} .

Proof of the proposition

Sketch of the proposition.

For simplicity we only consider the case of n=2. Let $x\in X$. After a change of coordinates, we can assume that $x=0\in \mathbb{R}^2$, and that locally X is given as the graph of a function $\varphi:U\to \mathbb{R}$ of class \mathcal{C}^{k+1} , where U is a neighbourhood of zero in \mathbb{R} . Again, for simplicity assume that X intersects the y-axis only at the origin.

Proof of the proposition

Sketch of the proposition.

For simplicity we only consider the case of n=2. Let $x\in X$. After a change of coordinates, we can assume that $x=0\in\mathbb{R}^2$, and that locally X is given as the graph of a function $\varphi:U\to\mathbb{R}$ of class \mathcal{C}^{k+1} , where U is a neighbourhood of zero in \mathbb{R} . Again, for simplicity assume that X intersects the y-axis only at the origin. Consider the function $f\in\mathcal{R}_k(X)$ given by

$$f(x,y) := \begin{cases} \frac{y}{x} & \text{for } x \neq 0, \\ \varphi'(0) & \text{for } x = 0. \end{cases}$$

Proof of the proposition

Sketch of the proposition.

For simplicity we only consider the case of n=2. Let $x\in X$. After a change of coordinates, we can assume that $x=0\in\mathbb{R}^2$, and that locally X is given as the graph of a function $\varphi:U\to\mathbb{R}$ of class \mathcal{C}^{k+1} , where U is a neighbourhood of zero in \mathbb{R} . Again, for simplicity assume that X intersects the y-axis only at the origin. Consider the function $f\in\mathcal{R}_k(X)$ given by

$$f(x,y) := \begin{cases} \frac{y}{x} & \text{for } x \neq 0, \\ \varphi'(0) & \text{for } x = 0. \end{cases}$$

By assumption, there exists $F \in \mathcal{R}^k(\mathbb{R}^2)$ with $F|_X = f$.

Proof of the proposition

Sketch of the proposition.

For simplicity we only consider the case of n=2. Let $x\in X$. After a change of coordinates, we can assume that $x=0\in\mathbb{R}^2$, and that locally X is given as the graph of a function $\varphi:U\to\mathbb{R}$ of class \mathcal{C}^{k+1} , where U is a neighbourhood of zero in \mathbb{R} . Again, for simplicity assume that X intersects the y-axis only at the origin. Consider the function $f\in\mathcal{R}_k(X)$ given by

$$f(x,y) := \begin{cases} \frac{y}{x} & \text{for } x \neq 0, \\ \varphi'(0) & \text{for } x = 0. \end{cases}$$

By assumption, there exists $F \in \mathcal{R}^k(\mathbb{R}^2)$ with $F|_X = f$. Then G := xF - y vanishes identically on X, and $\frac{\partial G}{\partial y}(0) = -1$.

Observation

Let $X \subset \mathbb{R}^n$ be a 1-regulous submanifold of dimension one. Then, it is actually an analytic submanifold of \mathbb{R}^n .

Observation

Let $X \subset \mathbb{R}^n$ be a 1-regulous submanifold of dimension one. Then, it is actually an analytic submanifold of \mathbb{R}^n .

Proof.

Observation

Let $X \subset \mathbb{R}^n$ be a 1-regulous submanifold of dimension one. Then, it is actually an analytic submanifold of \mathbb{R}^n .

Proof.

Thanks to results of Fukui, Kurdyka and Paunescu, the implicit function theorem holds in the class of \mathcal{C}^1 arc-analytic functions.

Observation

Let $X \subset \mathbb{R}^n$ be a 1-regulous submanifold of dimension one. Then, it is actually an analytic submanifold of \mathbb{R}^n .

Proof.

Thanks to results of Fukui, Kurdyka and Paunescu, the implicit function theorem holds in the class of \mathcal{C}^1 arc-analytic functions. Since regulous functions are arc-analytic, it follows that k-regulous manifolds locally can be represented as graphs of arc-analytic functions.

Observation

Let $X \subset \mathbb{R}^n$ be a 1-regulous submanifold of dimension one. Then, it is actually an analytic submanifold of \mathbb{R}^n .

Proof.

Thanks to results of Fukui, Kurdyka and Paunescu, the implicit function theorem holds in the class of \mathcal{C}^1 arc-analytic functions. Since regulous functions are arc-analytic, it follows that k-regulous manifolds locally can be represented as graphs of arc-analytic functions. As X is of dimension one, the conclusion follows.

Observation

Let $X \subset \mathbb{R}^n$ be a 1-regulous submanifold of dimension one. Then, it is actually an analytic submanifold of \mathbb{R}^n .

Corollary

Let $X \subset \mathbb{R}^n$ be an affine variety of dimension 1, which is also a \mathcal{C}^{k+1} -submanifold of \mathbb{R}^n . Assume that $\mathcal{R}^k(X) = \mathcal{R}_k(X)$. Then X is an analytic submanifold of \mathbb{R}^n .

Observation

Let $X \subset \mathbb{R}^n$ be a 1-regulous submanifold of dimension one. Then, it is actually an analytic submanifold of \mathbb{R}^n .

Corollary

Let $X \subset \mathbb{R}^n$ be an affine variety of dimension 1, which is also a \mathcal{C}^{k+1} -submanifold of \mathbb{R}^n . Assume that $\mathcal{R}^k(X) = \mathcal{R}_k(X)$. Then X is an analytic submanifold of \mathbb{R}^n .

Example

Let
$$X := \{(x,y) \in \mathbb{R}^2 : x^3 = y^7\}$$
. Then $\mathcal{R}^1(X) \subsetneq \mathcal{R}_1(X)$.

About Question 2

It turns out that if X is a one dimensional analytic submanifold of \mathbb{R}^n , then the answer to Question 2 is affirmative:

$\mathsf{Theorem}$

Let $X \subset \mathbb{R}^n$ be an affine variety of dimension one, which is a submanifold of class at least C^2 in \mathbb{R}^n . Then, the following conditions are equivalent:

- **3** X is a 1-regulous submanifold of \mathbb{R}^n ,
- **4** \mathbf{X} is a k-regulous submanifold of \mathbb{R}^n for all k,
- **5** X is an analytic submanifold of \mathbb{R}^n ,
- $\mathcal{R}^0(X) = \mathcal{R}^1(X) = \mathcal{R}^2(X) = \dots$ (although $\mathcal{R}^0(X) \subsetneq \mathcal{R}(X)$ unless X is nonsingular).

Questions

Question

Let $X \subset \mathbb{R}^n$ be an affine curve, which is not an analytic submanifold of \mathbb{R}^n . What condition does one need to impose on $f \in \mathcal{R}_k(X)$ to make sure that it is k-regulous?

Questions

Question

Let $X \subset \mathbb{R}^n$ be an affine curve, which is not an analytic submanifold of \mathbb{R}^n . What condition does one need to impose on $f \in \mathcal{R}_k(X)$ to make sure that it is k-regulous?

Question

Let $X \subset \mathbb{R}^n$ be an affine variety, which is also a k-regulous submanifold of \mathbb{R}^n . Does there exist an intrinsic condition in the spirit of the one given by Kollár and Nowak, which characterises k-regulous functions on X?

Questions

Question

Let $X \subset \mathbb{R}^n$ be an affine curve, which is not an analytic submanifold of \mathbb{R}^n . What condition does one need to impose on $f \in \mathcal{R}_k(X)$ to make sure that it is k-regulous?

Question

Let $X \subset \mathbb{R}^n$ be an affine variety, which is also a k-regulous submanifold of \mathbb{R}^n . Does there exist an intrinsic condition in the spirit of the one given by Kollár and Nowak, which characterises k-regulous functions on X?

Remark

If X is of dimension greater than 1, then in general X is a 1-regulous submanifold $\iff X$ is an analytic submanifold.

Thank you for your attention!

Bibliography

- Juliusz Banecki, Extension of k-regulous functions from varieties of arbitrary dimension, arXiv preprint **2412.14412** (2024).
- János Kollár and Krzysztof Nowak, *Continuous rational functions on real and p-adic varieties*, Mathematische Zeitschrift **279** (2015), no. 1, 85–97.
- Laurentiu Paunescu Toshizumi Fukui, Krzysztof Kurdyka, *An inverse mapping theorem for arc-analytic homeomorphisms*, Banach Center Publications **65** (2004), no. 1, 49–56.