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Preliminaries

By a quasi-affine algebraic variety we mean a Zariski locally closed
set X ⊂ Rn for some n.

We say that a function f : X → R is
regular, or write f ∈ R(X ), if there exist two polynomials
P,Q ∈ R[x1, . . . , xn] such that Q does not vanish at any point of

X and f = P|X
Q|X . We say that X is nonsingular if for every every

point x ∈ X the localisation R(X )mx is a regular local ring, where
mx denotes the maximal ideal of function vanishing at x .

Definition

We say that a function f : X → R admits a rational
representation, if there exists a Zariski open and dense subset U of
X , such that the restriction f |U is regular. The ring of real valued
functions on X which are of class Ck and admit rational
representations is denoted by Rk(X ).
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Examples

Example

For k ≥ 0, the function f (x , y) =

{
xk+3

x2+y2 if (x , y) ̸= (0, 0),

0 if (x , y) = (0, 0)

belongs to Rk(Rn), but it does not belong to Rk+1(R2).

Example

Consider the Whitey umbrella
X = {(x , y , z) ∈ R3 : x2 − y2z = 0}. Let f : X → R be given by

f (x , y , z) =

{
0 if z > 0,

e−
1
z2 if z < 0.

Then f ∈ Rk(X ) for all k ≥ 0, but f is not even semialgebraic.
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k-regulous functions

Definition

Let X ⊂ Rn be an affine variety. A function f : X → R is said to
be k-regulous, if there exists a function F ∈ Rk(Rn) such that
F |X = f . The ring of k-regulous functions on X is denoted by
Rk(X ).

As seen in the example on the last slide, in general
Rk(X ) ̸⊂ Rk(X ). Fortunately, the other inclusion does hold:

Observation (Kollár, Nowak 2014)

For an affine variety X it holds that Rk(X ) ⊂ Rk(X ).
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Characterisation of 0-regulous functions

Theorem

Let X ⊂ Rn be an affine variety and let f : X → R be a continuous
function. Then, f is 0-regulous if and only if the following holds:

For every Zariski closed subset Y ⊂ X , the restriction f |Y admits a
rational representation.

Corollary 1

Let X ⊂ Rn be a nonsingular variety. Then R0(X ) = R0(X ).

Corollary 2

Let X ⊂ Rn be a variety of dimension one. Then R0(X ) = R0(X ).
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What about k > 0?

Fix k > 0.

Question 1

Let X ⊂ Rn be a nonsingular variety. Does it follow that
Rk(X ) = Rk(X )?

Question 2

Let X ⊂ Rn be a variety of dimension one. Does it follow that
Rk(X ) = Rk(X )?



k-regulous functions on nonsingular varieties

Theorem (B., 2025)

Let X ⊂ Rn be a nonsingular affine variety and let k ≥ 0. Then
Rk(X ) = Rk(X ).

A rough sketch of the proof.

Let f ∈ Rk(X ). Assume first that there exists a regular retraction
r : Rn → X , i.e. an n-tuple r := (r1, . . . , rn) of function in R(Rn),
such that r(Rn) = X and r |X = idX . Then, we can just take
F := f ◦ r and we are done.
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Proof of the theorem

A rough sketch of the proof.

In general, the best thing that we can say is that there exists a
Euclidean neighbourhood U of X in Rn and a Nash retraction
r : U → X . Then f ◦ r is a function of class Ck on U.

Let Z ⊂ X be a proper algebraic subset of X , such that f |X\Z is
regular. Let P,Q ∈ R[x1, . . . , xn] be polynomials, such that Q

does not vanish at any point of X\Z and f |X\Z =
P|X\Z
Q|X\Z

.

Now, using some algebra, we find a regular mapping p : Rn → Rn,
which interpolates r on X ∪ r−1(Z ) up to derivatives of some large
order. Then, we consider the fraction P◦p

Q◦p . With some effort, we

check that P◦p
Q◦p ∼ P◦r

Q◦r extends to a function of class Ck (at least
on a neighbourhood of X ).
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About Question 2

Fix k > 0, n ≥ m ≥ 0.

Definition

Let M ⊂ Rn be a Ck -submanifold in Rn of dimension m. We say
that X is a k-regulous submanifold of Rn, if for every point x ∈ X
there exist a neighbourhood U ⊂ Rn and a k-regulous mapping
f : Rn → Rn−m, such that f −1(0) ∩ U = M ∩ U and f is a
submersion at x .

Observation

Let X ⊂ Rn be an affine variety of dimension 1, which is a Ck+1

submanifold of Rn. Assume that Rk(X ) = Rk(X ). Then, X must
be a k-regulous submanifold of Rn.
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Proof of the proposition

Sketch of the proof of the proposition.

For simplicity we only consider the case of n = 2.

Let x ∈ X . After
a change of coordinates, we can assume that x = 0 ∈ R2, and that
locally X is given as the graph of a function φ : U → R of class
Ck+1, where U is a neighbourhood of zero in R. Again, for
simplicity assume that X intersects the y -axis only at the origin.
Consider the function f ∈ Rk(X ) given by

f (x , y) :=

{
y
x for x ̸= 0,

φ′(0) for x = 0.

By assumption, there exists F ∈ Rk(R2) with F |X = f . Then
G := xF − y vanishes identically on X , and ∂G

∂y (0) = −1.
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Proof.

Thanks to results of Fukui, Kurdyka and Paunescu, the implicit
function theorem holds in the class of C1 arc-analytic functions.
Since regulous functions are arc-analytic, it follows that k-regulous
manifolds locally can be represented as graphs of arc-analytic
functions. As X is of dimension one, the conclusion follows.
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Let X ⊂ Rn be an affine variety of dimension 1, which is also a
Ck+1-submanifold of Rn. Assume that Rk(X ) = Rk(X ). Then X
is an analytic submanifold of Rn.
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Let X := {(x , y) ∈ R2 : x3 = y7}. Then R1(X ) ⊊ R1(X ).
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About Question 2

It turns out that if X is a one dimensional analytic submanifold of
Rn, then the answer to Question 2 is affirmative:

Theorem

Let X ⊂ Rn be an affine variety of dimension one, which is a
submanifold of class at least C2 in Rn. Then, the following
conditions are equivalent:

1 R1(X ) = R1(X ),

2 Rk(X ) = Rk(X ) for all k ,

3 X is a 1-regulous submanifold of Rn,

4 X is a k-regulous submanifold of Rn for all k,

5 X is an analytic submanifold of Rn,

6 R0(X ) = R1(X ) = R2(X ) = . . . (although R0(X ) ⊊ R(X )
unless X is nonsingular).



Questions

Question

Let X ⊂ Rn be an affine curve, which is not an analytic
submanifold of Rn. What condition does one need to impose on
f ∈ Rk(X ) to make sure that it is k-regulous?

Question

Let X ⊂ Rn be an affine variety, which is also a k-regulous
submanifold of Rn. Does there exist an intrinsic condition in the
spirit of the one given by Kollár and Nowak, which characterises
k-regulous functions on X?

Remark

If X is of dimension greater than 1, then in general
X is a 1-regulous submanifold ⇍⇒ X is an analytic submanifold.
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Thank you for your attention!
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