Differentiable approximation of continuous definable maps that preserves the image

Antonio Carbone

University of Ferrara

23 June 2025

1. Differentiable approximation of continuous definable maps...

Weierstrass' approximation

Weierstrass' approximation

Every continuous map $f: X \to \mathbb{R}^m$, defined on a compact subset X of \mathbb{R}^n , can be uniformly approximated by polynomial maps.

Uniform norm

Let $X \subset \mathbb{R}^n$ be a **compact** subset and $Y \subset \mathbb{R}^m$ any subset. For a continuous map $f: X \to Y$ we consider the uniform norm:

$$||f|| := ||f||_{\infty} = \max_{x \in X} |f(x)|_{m},$$

where $|\cdot|_m$ is the Euclidean norm of \mathbb{R}^m .

Weierstrass' approximation

$$f:X\to\mathbb{R}^m$$

Weierstrass' approximation

$$f: X \to \mathbb{R}^m$$

Several difficulties arise when one tries to restrict the image of the approximating map to a fixed target space $Y \subset \mathbb{R}^m$. For instance, there exist no non-constant polynomial maps from the 2-dimensional sphere \mathbb{S}^2 to the circle \mathbb{S}^1 .

Strategy

(i) Consider, instead of polynomials maps, a more flexible class of approximating maps (like differentiable maps).

Whitney's approximation

Whitney's approximation

Let $Y \subset \mathbb{R}^m$ be a submanifold of class \mathcal{C}^p , with $p \geq 1$ or $p = \infty$. Then, each continuous map $f: X \to Y$ (defined on a compact subset X of \mathbb{R}^n), can be uniformly approximated by maps of class \mathcal{C}^p .

A map $f: X \to Y$ is **of class** \mathcal{C}^p $(p \ge 1 \text{ or } p = \infty)$ if there exist an open neighborhood $U \subset \mathbb{R}^n$ of X and a map $F: U \to \mathbb{R}^m$ of class \mathcal{C}^p in the usual sense, such that f is the restriction $F|_X$ of F to X.

Whitney's approximation - general target space

Example

Let $Y:=\{\mathrm{xy}=0\}\subset\mathbb{R}^2$ and $\Omega\subset\mathbb{R}^2$ an open neighborhood of Y. Suppose that there exists a \mathcal{C}^1 retraction $\pi:\Omega\to Y$. As π is the identity on Y, we have $d_0\pi=\mathrm{id}_{\mathbb{R}^2}$. Thus, π is a local diffeomorphism at the origin, which is a contradiction.

Strategy

- (i) Consider, instead of polynomials maps, a more flexible class of approximating maps (like differentiable maps).
- (ii) Consider domains of definitions and target spaces in some suitable tame category (like a fixed o-minimal structure).

We deal with: Differentiable approximation of continuous definable maps...

Convention

We consider a **fixed** o-minimal structure on the ordered field of real numbers \mathbb{R} . When we refer to definable sets or definable maps we mean definable in this fixed o-minimal structure.

A definable map $f:X \to Y$ is **of class** \mathcal{C}^p if it is the restriction of a definable map $F:U \to \mathbb{R}^m$ of class \mathcal{C}^p in the usual sense, where U is a definable open neighborhood of X in \mathbb{R}^n .

Triangulations of definable sets

Triangulations of definable sets

Let $X \subset \mathbb{R}^n$ be a compact definable set, then there exists a **definable** triangulation (\mathcal{K}, φ) in \mathbb{R}^n of X. That is, there exists a finite simplicial complex \mathcal{K} of \mathbb{R}^n and a definable homeomorphism $\varphi : |\mathcal{K}| \to X$.

Moreover, we can choose the definable triangulation (\mathcal{K}, φ) compatible with a finite family \mathcal{E} of definable subsets of X. That is, each $E \in \mathcal{E}$ is a union of some $\varphi(\mathring{\sigma})$ for some $\sigma \in \mathcal{K}$.

 $\overset{\circ}{\sigma}:=$ Relative interior of σ

Differentiable approximation for semialgebraic maps

Theorem (Fernando, Ghiloni 2019)

Let $p \geq 1$ be an integer and $f: X \to Y$ be a continuous definable map between a compact definable sets $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$. If the definable target space $Y \subset \mathbb{R}^m$ has a definable triangulation (\mathcal{K}, φ) such that $\varphi: |\mathcal{K}| \to Y$ is of class \mathcal{C}^p , then f can be uniformly approximated by definable maps $g: X \to Y$ of class \mathcal{C}^p .

Remark: p = 1, 2, ... but it is not allowed $p = \infty$.

The case $p = \infty$

Example

Let X:=[0,1] and $Y:=\{\mathtt{xy}=0\}\cap\{|x|\leq 1\}\cap\{|y|\leq 1\}\subset\mathbb{R}^2$. Consider the continuous semialgebraic map $f:X\to Y$ defined as follows:

$$f(x) := \begin{cases} \left(\frac{1}{2} - x, 0\right), & \text{if } 0 \le x \le \frac{1}{2}, \\ \left(0, x - \frac{1}{2}\right), & \text{if } \frac{1}{2} < x \le 1. \end{cases}$$

Let $g:X\to Y$ be any semialgebraic map of class \mathcal{C}^∞ . As g is analytic, then either $g(X)\subset \{\mathtt{x}=0\}$ or $g(X)\subset \{\mathtt{y}=0\}$. We deduce, $\|f-g\|\geq \frac{1}{2}$. Thus, f cannot be approximated by a \mathcal{C}^∞ semialgebraic map.

Pawłucki's desingularization

Strict C^p -refinement theorem (Pawłucki 2023)

Let $X \subset \mathbb{R}^n$ be a compact definable set and $f: X \to \mathbb{R}^m$ a continuous definable map. Let (\mathcal{T}, ψ) be a definable triangulation compatible with a finite family \mathcal{E} of definable subsets of X. Then, for each integer $p \geq 1$, there exists a definable triangulation (\mathcal{K}, φ) of $|\mathcal{T}|$ such that:

- ullet $\mathcal K$ is a refinement of $\mathcal T$.
- $\varphi(\sigma) = \sigma$ for each simplex $\sigma \in \mathcal{T}$.
- ullet $(\mathcal{K},\psi\circarphi)$ is a definable triangulation of X compatible with $\mathcal{E}.$
- $\psi \circ \varphi : |\mathcal{K}| \to X$ is of class \mathcal{C}^p .
- $\psi \circ \varphi|_{\overset{\circ}{\sigma}}$ is an embedding of class \mathcal{C}^p for each $\sigma \in \mathcal{K}$.
- $f \circ \psi \circ \varphi : |\mathcal{K}| \to X$ is of class \mathcal{C}^p .

The case $p = \infty$

Example

Consider the continuous semialgebraic function $f:\mathbb{R}\to\mathbb{R}, t\mapsto |t|$. Assume that there exists a semialgebraic homeomorphism $\varphi:\mathbb{R}\to\mathbb{R}$ of class \mathcal{C}^∞ such that $f\circ\varphi$ is of class \mathcal{C}^∞ . We may assume $\varphi(0)=0$. As φ is analytic, its germ at 0 satisfies $\varphi\sim t^k$ with k a positive odd integer. Thus, $f\circ\varphi\sim |t|^k$, a contradiction.

Definable approximation

Definable approximation (Fernando-Ghiloni + Pawłucki 2023)

Let $p \geq 1$ be an integer. Each continuous definable map $f: X \to Y$ between a compact definable set $X \subset \mathbb{R}^n$ and a definable set $Y \subset \mathbb{R}^m$ can be uniformly approximated by definable maps $g: X \to Y$ of class \mathcal{C}^p .

Definable approximation

Definable approximation (Fernando-Ghiloni + Pawłucki 2023)

Let $p \geq 1$ be an integer. Each continuous definable map $f: X \to Y$ between a compact definable set $X \subset \mathbb{R}^n$ and a definable set $Y \subset \mathbb{R}^m$ can be uniformly approximated by definable maps $g: X \to Y$ of class \mathcal{C}^p .

Let $f: X \to Y$ be a definable map. As f is definable, the set f(X) is definable:

$$X \stackrel{f}{\to} f(X) \hookrightarrow Y$$

2. ...that preserves the image

Control on the image of the approximating map

Problem: Can we find an approximating map $g: X \to Y$ of class C^p such that g(X) = f(X)?

Definable \mathcal{C}^p -approximation that preserves the image

Theorem (2025)

Let $f:X\to\mathbb{R}^m$ be a continuous definable map defined on a compact definable set $X\subset\mathbb{R}^n$. Let $\varepsilon>0$ and let $p\geq 1$ be an integer. Then, there exists a definable map $g:X\to\mathbb{R}^m$ of class \mathcal{C}^p such that

- $\bullet \|f-g\|<\varepsilon,$
- g(X) = f(X).

Main ingredients of the proof

- Pawłucki's desingularization
- Surjective simplicial approximation
- "(Definable) manipulations"

Simplicial approximation

Finite simplicial approximation

Let $\mathcal K$ be a finite simplicial complex of $\mathbb R^n$, $\mathcal L$ a finite simplicial complex of $\mathbb R^m$ and $f: |\mathcal K| \to |\mathcal L|$ a continuous map. Then, for each $\varepsilon > 0$ there exist a subdivision $\mathcal K^*$ of $\mathcal K$, a subdivision $\mathcal L^*$ of $\mathcal L$ and a simplicial map $h: |\mathcal K^*| \to |\mathcal L^*|$ such that $\|f-h\| < \varepsilon$.

Surjective simplicial approximation

Surjective finite simplicial approximation (2025)

Let $\mathcal K$ be a finite simplicial complex of $\mathbb R^n$, $\mathcal L$ a finite simplicial complex of $\mathbb R^m$ and $f: |\mathcal K| \to |\mathcal L|$ a continuous **surjective definable** map. Then, for each $\varepsilon > 0$ there exist a subdivision $\mathcal K^*$ of $\mathcal K$, a subdivision $\mathcal L^*$ of $\mathcal L$ and a **surjective** simplicial map $h: |\mathcal K^*| \to |\mathcal L^*|$ such that $||f - h|| < \varepsilon$.

Surjective simplicial approximation

Example

Let $\mathcal K$ and $\mathcal L$ be simplicial complexes such that $|\mathcal K|=[0,1]$ and $|\mathcal L|=[0,1]^2$ and $f:|\mathcal K|\to |\mathcal L|$ any continuous surjective map.

Then no surjective simplicial approximation is possible because $|\mathcal{K}|$ has dimension 1 and $|\mathcal{L}|$ has dimension 2.

Sketch of the proof in a (non-commutative) diagram

Sketch of the proof in a (non-commutative) diagram

Thank you!