A converse to Cartan's Theorem B: The extension property for real analytic and Nash sets

José F. Fernando (joint work with Riccardo Ghiloni)
Universidad Complutense de Madrid (Università di Trento)

Tame geometry and extensions of functions - Pawłucki 70

1. Introduction

1.1. Analytic case

Let $\Omega \subset \mathbb{R}^n$ be an open set. A subset $X \subset \Omega$ has the analytic extension property if each analytic function $f: X \to \mathbb{R}$ extends to an analytic function on Ω .

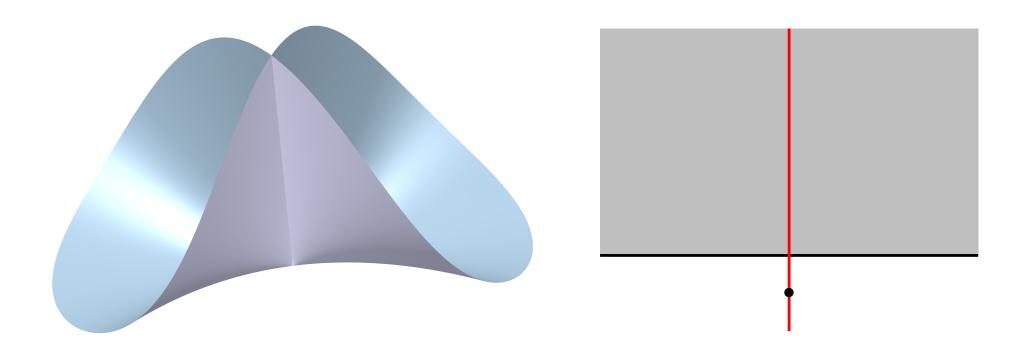
Problem. Which sets $X \subset \Omega$ have the analytic extension property?

Necessary condition. X is the zero set of an analytic function on $\Omega \leadsto X$ is a C-analytic set.

Example. The necessary condition is not sufficient. Consider Whitney's umbrella $W:=\{y^2-zx^2=0\}\subset\mathbb{R}^3$ and

$$f:W\to\mathbb{R},\ (x,y,z)\mapsto\begin{cases} \frac{x}{z+1} & \text{if } (x,y,z)\neq(0,0,-1),\\ 0 & \text{otherwise} \end{cases}$$

is analytic on W, but does not extend analytically to \mathbb{R}^3 .



$$W:=\{y^2-zx^2=0\}\subset\mathbb{R}^3\quad\text{and}\quad \xi:=\frac{x}{z+1}$$

A sufficient condition is provided by coherence and Cartan's Theorem B.

Coherence. A C-analytic set X is coherent if its local equations at each point $x \in X$ are generated by its global equations.

$$\mathcal{J}_{X,x} := \{ f_x \in \mathcal{O}_{\mathbb{R}^n,x} : \ X_x \subset \mathcal{Z}(f_x) \} \quad \text{and} \quad \mathcal{I}(X) := \{ f \in \mathcal{O}(\mathbb{R}^n) : \ X \subset \mathcal{Z}(f) \}$$

$$X \text{ is coherent } \iff \mathcal{J}_{X,x} = \mathcal{I}_{X,x} := \mathcal{I}(X) \mathcal{O}_{\mathbb{R}^n,x} \ \forall x \in X$$

Cartan's Theorem B (1957) \Longrightarrow If $X \subset \Omega$ is a coherent C-analytic set, X has the analytic extension property.

Theorem. A set $X \subset \Omega$ has the analytic extension property $\iff X$ is a coherent analytic set.

1.2. Nash case

Semialgebraic set: Boolean combination of sets defined by polynomial equalities and inequalities.

Semialgebraic function: Function with semialgebraic graph.

Nash function on an open semialgebraic set: Analytic + semialgebraic function on an open semialgebraic set.

Nash manifold: smooth manifold + semialgebraic set \iff analytic manifold + semialgebraic set.

Nash set: Zero set of a Nash function on an open semialgebraic set $\iff C$ -analytic set + semialgebraic set.

Local Nash function on a Nash set: function on a Nash set that is the restriction of a Nash function on an open neighborhood of each point.

Nash extension property: Let $\Omega \subset \mathbb{R}^n$ be an open semialgebraic set. A subset $X \subset \Omega$ has the Nash extension property if each local Nash function $f: X \to \mathbb{R}$ extends to a Nash function defined on Ω .

Problem. Which sets $X \subset \Omega$ have the Nash extension property?

Necessary condition: X is a Nash set.

Example. The necessary condition is not sufficient. Consider Whitney's umbrella $W:=\{y^2-zx^2=0\}\subset\mathbb{R}^3$ and

$$f:W\to\mathbb{R},\ (x,y,z)\mapsto \begin{cases} \frac{x}{z+1} & \text{if } (x,y,z)\neq (0,0,-1),\\ 0 & \text{otherwise} \end{cases}$$

is local Nash on W, but does not extend to \mathbb{R}^3 as a Nash function.

A sufficient condition is provided by coherence and Nash Theorem B.

Coherence: A Nash set X is coherent if its local equations at each point $x \in X$ are generated by its global equations.

$$\mathcal{J}_{X,x}^{\bullet} := \{ f_x \in \mathbb{N}_{\mathbb{R}^n,x} : \ X_x \subset \mathcal{Z}(f_x) \} \quad \text{and} \quad \mathcal{I}(X)^{\bullet} := \{ f \in \mathbb{N}(\mathbb{R}^n) : \ X \subset \mathcal{Z}(f) \}$$

$$X \text{ is coherent} \iff \mathcal{J}_{X,x}^{\bullet} = \mathcal{I}_{X,x}^{\bullet} := \mathcal{I}^{\bullet}(X) \mathbb{N}_{\mathbb{R}^n,x} \ \forall x \in X$$

Nash Theorem B (Coste-Ruiz-Shiota, 2000) \Longrightarrow If $X \subset \Omega$ is a coherent Nash set, X has the Nash extension property.

Theorem. $X \subset \Omega$ has the Nash extension property $\iff X$ is a coherent Nash set.

Remark. We 'semialgebraically' adapt the constructions done in the analytic case avoiding cohomology arguments.

Bad 'cohomological' behavior in the Nash case: $H^1(\mathbb{R}, \mathcal{N}_{\mathbb{R}}) \neq 0$ (Hubbard, 1972).

1.3. Related problem: Whitney's extension problem

Both previous problems are somehow related to Whitney's extension problem (1934) both in the general and the semialgebraic setting. Some relevant names:

 \mathbb{C}^p case (solved): Whitney, Glaeser, Bierstone, Milman, Pawłucki, Fefferman,....

 \mathbb{C}^p **semialgebraic case** (not completely solved): Kurdyka, Pawłucki, Aschenbrenner, Thamrongthanyalak, Fefferman, Luli, Bierstone, Campesato, Milman,...

2. Analytic case

2.1. Coherence and Cartan's Theorems A & B

Coherence. A sheaf \mathcal{F} of $\mathcal{O}_{\mathbb{R}^n}$ -modules is *coherent* if:

- (i) \mathcal{F} is of finite type: $\forall x \in \mathbb{R}^n \exists$ an open neighborhood $U \subset \mathbb{R}^n$ of x, $m \in \mathbb{N}^*$ and a surjective morphism $\mathcal{O}^m_{\mathbb{R}^n}|_U \to \mathcal{F}|_U$, and
- (ii) the kernel of each homomorphism $\mathcal{O}^p_{\mathbb{R}^n}|_V \to \mathcal{F}|_V$ is of finite type for each $p \geq 1$ and each open subset V of \mathbb{R}^n .

Cartan's Theorems A and B. describe the local-global behavior of coherent sheaves \mathcal{F} of $\mathcal{O}_{\mathbb{R}^n}$ -modules:

- (A) The stalks of a coherent sheaf $\mathfrak F$ are spanned by the global sections.
- (B) Each p-cohomology group of a coherent sheaf $\mathfrak T$ is trivial for each p>0.

Let $X \subset \mathbb{R}^n$ be a C-analytic subset:

 $\mathfrak{C}^\omega_X:=\mathcal{O}_{\mathbb{R}^n}/\mathcal{J}_X$ is the sheaf of analytic functions germs on X

 $\mathcal{O}_X := \mathcal{O}_{\mathbb{R}^n}/\mathcal{I}_X$ is the sheaf of global analytic functions germs on X.

 \mathcal{I}_X is the biggest coherent $\mathcal{O}_{\mathbb{R}^n}$ -sheaf of ideals with support $X \Longrightarrow \mathcal{O}_{\mathbb{R}^n}/\mathcal{I}_X$ is coherent.

$$0 \to \mathcal{I}_X \to \mathcal{O}_{\mathbb{R}^n} \to \mathcal{O}_{\mathbb{R}^n}/\mathcal{I}_X \to 0$$
 (exact sequence coherent sheaves)

Cartan's Theorem $\mathbf{B} \Longrightarrow H^1(\mathbb{R}^n, \mathcal{I}_X) = 0 \Longrightarrow$ The sequence

$$0 \to H^0(\mathbb{R}^n, \mathcal{I}_X) \to H^0(\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n}) \to H^0(\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n}/\mathcal{I}_X) \to 0$$

is exact.

 $\mathcal{O}(X) := H^0(X, (\mathcal{O}_{\mathbb{R}^n}/\mathcal{I}_X)|_X)$ is the ring of global analytic functions on X $\mathcal{C}^\omega(X) := H^0(X, (\mathcal{O}_{\mathbb{R}^n}/\mathcal{J}_X)|_X)$ is the ring of analytic functions on X.

Analytic extension property: A C-analytic set $X \subset \mathbb{R}^n$ has the analytic extension property if $\mathcal{O}(\mathbb{R}^n) \to \mathcal{C}^\omega(X)$ is surjective.

2.2. Tails and points of non-coherence of a C-analytic set

Let $X \subset \mathbb{R}^n$ be a C-analytic set.

2.2.1. Complexification of a *C*-analytic set.

Consider the coherent sheaf of $\mathcal{O}_{\mathbb{C}^n}$ -ideals $\mathcal{I}_X \otimes_{\mathbb{R}} \mathbb{C}$ on \mathbb{R}^n . There exists an open neighborhood $\Omega \subset \mathbb{C}^n$ of \mathbb{R}^n and a coherent sheaf \mathcal{F} of $\mathcal{O}_{\mathbb{C}^n}$ -ideals on Ω such that $\mathcal{F}|_{\mathbb{R}^n} = \mathcal{I}_X \otimes_{\mathbb{R}} \mathbb{C} = \mathcal{I}(X)\mathcal{O}_{\mathbb{C}^n}|_{\mathbb{R}^n}$. A complexification \widetilde{X} of X is the support of \mathcal{F} .

2.2.2. Regular and singular points in the analytic setting

 $x \in X$ is a regular point of X if $\mathcal{O}(X)_{\mathfrak{m}_x}$ is a regular local ring. If one between $\mathcal{O}(X)_{\mathfrak{m}_x}$, $\mathcal{O}_{\mathbb{R}^n,x}/\mathcal{I}_{X,x}$, $\mathcal{O}_{\mathbb{C}^n,x}/(\mathcal{I}_{X,x}\otimes_{\mathbb{R}}\mathbb{C})$, $\mathcal{O}(\widetilde{X})_{\mathfrak{n}_x}$ is regular, all are regular.

 $\operatorname{Reg}(X) = \operatorname{Reg}(\widetilde{X}) \cap X \leadsto \text{set of regular points of } X.$

 $\operatorname{Sing}(X) := X \setminus \operatorname{Reg}(X) = \operatorname{Sing}(\widetilde{X}) \cap X \leadsto \textit{singular locus of } X \text{ is a C-analytic set}$ and $\dim(\operatorname{Sing}(X)) < \dim(X)$ (because $\dim(\operatorname{Sing}(\widetilde{X})) < \dim(\widetilde{X})$).

2.2.3. *C*-semianalytic sets

A C-semianalytic subset S of \mathbb{R}^n is a locally finite union of basic C-semianalytic subsets of $\mathbb{R}^n \leadsto \{f = 0, g_1 > 0, \dots, g_r > 0\}$ where $r \ge 1$ and $f, g_i \in \mathcal{O}(\mathbb{R}^n)$.

2.2.4. Set of 'tails' of a C-analytic set

 $T(X) := \{x \in X : \mathcal{J}_{X,x} \neq \mathcal{I}_{X,x}\}$ is the set of 'tails' of $X \leadsto T(X) \subset \operatorname{Sing}(X)$ is a C-semianalytic set of dimension $\dim(T(X)) < \dim(X)$.

2.2.5. Set of points of non-coherence.

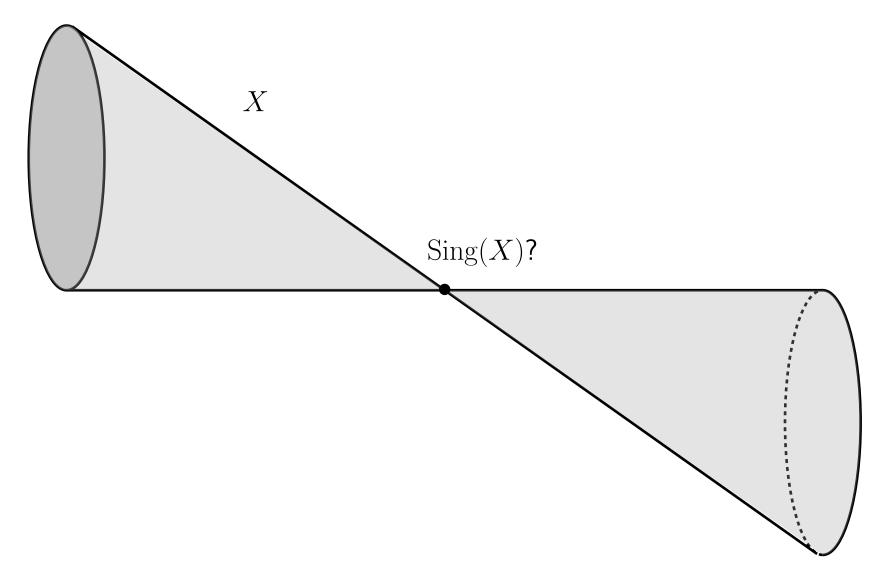
The set N(X) of points of non-coherence of X is the set of points $x \in X$ such that \mathcal{J}_X is not of finite type at x (for each $x \in U \subset X$ the restricted sheaf $\mathcal{J}_X|_U$ is not of finite type) $\rightsquigarrow N(X)$ is a closed C-semianalytic subset of X of dimension $\leq \dim(X) - 2$.

2.2.6. Properties of 'tails' and points of non-coherence

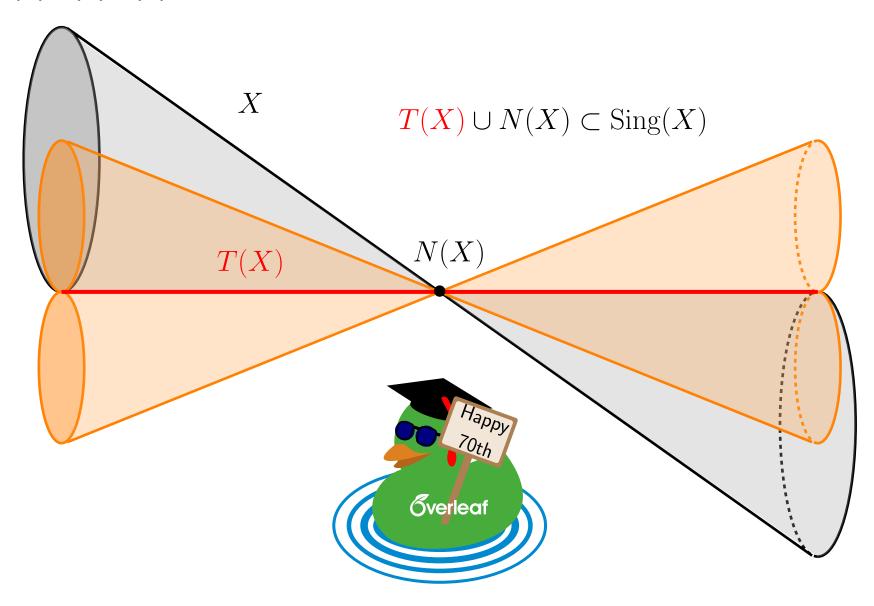
Let $X \subset \mathbb{R}^n$ be a C-analytic set.

- (1) $\forall x \in N(X) \exists$ an analytic arc $\alpha : (-1,1) \to X$ such that $\alpha(0) = x$, $\alpha((0,1)) \subset T(X) \setminus N(X)$.
- (2) $\operatorname{Cl}(T(X)) = \operatorname{Cl}(T(X) \setminus N(X)) = T(X) \cup N(X).$
- (3) X is coherent $\iff T(X) = \emptyset \iff N(X) = \emptyset$
- (4) If S is a connected component of Cl(T(X)), then $S \cap N(X) \neq \emptyset$.
- (5) $\dim(N(X)_x) < \dim(T(X)_x) \le \dim(\operatorname{Sing}(X)_x)$ for each $x \in N(X)$.
- **(6)** $N(X) \cap T(X)$ may be non-empty, even if X is C-irreducible. Consider $X:=\{(x^2-y^2-x^3)^2(y-x)-z^2=0\} \leadsto T(X)=\{x^2-y^2-x^3=0,x-y>0\} \cup \{(0,0,0)\}$ and $N(X)=\{(0,0,0)\}.$
- (7) A general idea in Real Geometry is that non-coherence arises when the irreducible components of the objects are not pure dimensional.

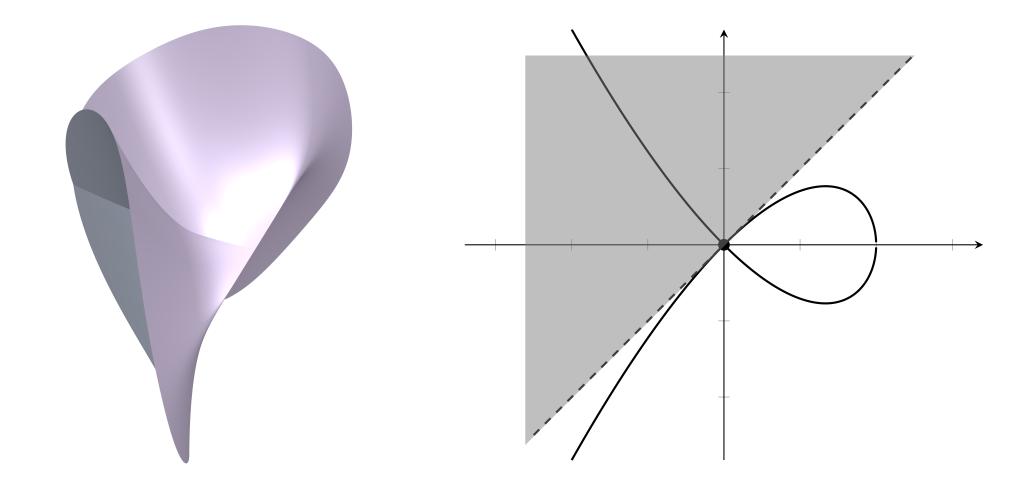
(1), (2), (3), (4) with 'Real Vision Glasses'



(1), (2), (3), (4) with 'Imaginary Vision Glasses'



(6)



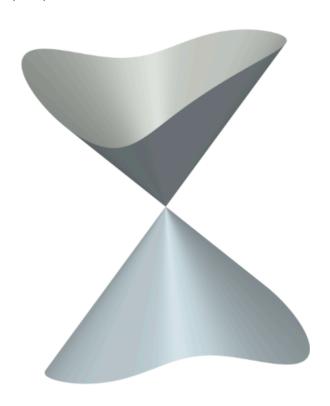
$$X := \{(x^2 - y^2 - x^3)^2 (y - x) - z^2 = 0\}$$

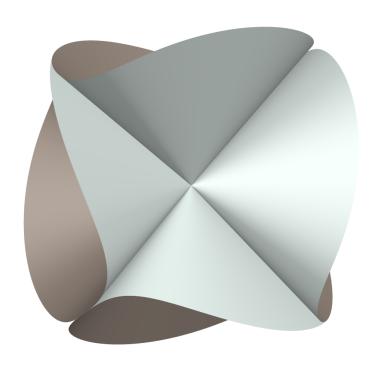
$$N(X) \cap T(X) = \{(0, 0, 0)\} \neq \emptyset$$

2.3. Examples of pure dimensional non-coherent C-analytic sets

(i) Galbiati-Hironaka: $X:=\{z(x+y)(x^2+y^2)-x^4=0\}\subset \mathbb{R}^3 \leadsto N(X)=\{(0,0,0)\}$, $\mathrm{Sing}(X)=\{x=0,y=0\}$ and $T(X)=\mathrm{Sing}(X)\setminus N(X)$.

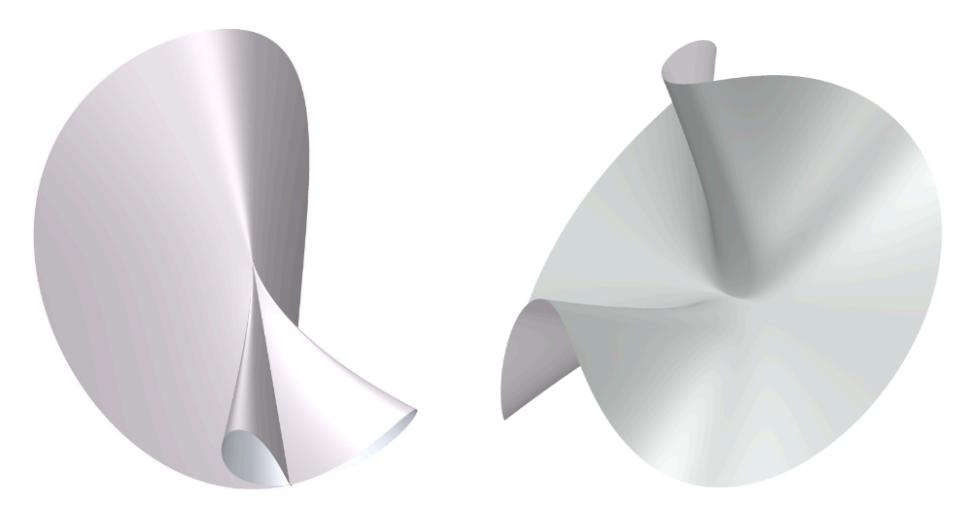
(ii) Galbiati-Hironaka (modified): $X:=\{z^2(x+y)^2(x^2+y^2)-x^6=0\}\subset \mathbb{R}^3 \implies N(X)=\{(0,0,0)\}, \ \mathrm{Sing}(X)=\{x=0,yz=0\} \ \mathrm{and} \ T(X)=\{x=0,y=0\}\setminus N(X).$





(iii) Birdie non-coherent singularity: $X := \{(x^2 + zy^2)x - y^4 = 0\} \subset \mathbb{R}^3 \leadsto N(X) = \{(0,0,0)\}, \, \operatorname{Sing}(X) = \{x = 0, y = 0\} \text{ and } T(X) = \operatorname{Sing}(X) \cap \{z < 0\}.$

(iv) Fake blanket: $X := \{(x^2 + z^2y^2)x - y^4 = 0\} \subset \mathbb{R}^3 \leadsto N(X) = \{(0,0,0)\}$, $\mathrm{Sing}(X) = \{x = 0, y = 0\}$ and $T(X) = \mathrm{Sing}(X) \setminus N(X)$.



2.4. Obstructing set of a meromorphic function

(1) Let X be a C-analytic subset of \mathbb{R}^n , let $\zeta: X \to \mathbb{R}$ and $x \in X$ such that $\exists f_x, g_x \in \mathcal{O}_{\mathbb{R}^n, x}$ satisfying $\zeta_x = \frac{f_x}{g_x}$ and g_x does not belong to a minimal prime of $\mathcal{J}_{X,x}$.

$$\frac{f_x}{g_x} = -a_x \in \mathcal{O}_{\mathbb{R}^n, x} \iff f_x + a_x g_x \in \mathcal{J}_{X, x} \iff f_x \in g_x \mathcal{O}_{\mathbb{R}^n, x} + \mathcal{J}_{X, x}.$$

(2) Let $\{X_i\}_{i\in I}$ be the C-analytic irreducible components of the C-analytic set X and let $\zeta:=\frac{f}{g}\in\mathcal{M}(X)$ such that $f,g\in\mathcal{O}(\mathbb{R}^n)$ and $g|_{X_i}\neq 0$ for each $i\in I$.

$$\zeta = \frac{f}{g} = -a|_{X} \text{ where } a \in \mathcal{O}(\mathbb{R}^{n}) \iff f \in g\mathcal{O}(\mathbb{R}^{n}) + \mathcal{I}(X)$$

$$\Longrightarrow f_{x} \in g_{x}\mathcal{O}_{\mathbb{R}^{n},x} + \mathcal{I}(X)\mathcal{O}_{\mathbb{R}^{n},x} = g_{x}\mathcal{O}_{\mathbb{R}^{n},x} + \mathcal{I}_{X,x} \ \forall x \in X$$

Obstructing set of $\zeta = \frac{f}{g} \in \mathcal{M}(X)$: $O(\zeta) := \{x \in X : f_x \notin g_x \mathcal{O}_{\mathbb{R}^n,x} + \mathcal{I}_{X,x}\}$ (closed subset of X).

Remark. $\zeta \in \mathcal{M}(X)$ has an analytic extension to $\mathbb{R}^n \iff \mathsf{O}(\zeta) = \varnothing$.

2.5. Main Theorem

Theorem. Let $X \subset \mathbb{R}^n$ be a C-analytic set with $N(X) \neq \emptyset$. Let

- $Y \subset X$ be a C-analytic subset that contains no irreducible component of X and meets T(X),
- $ullet U_0 \subset \mathbb{R}^n$ an open neighborhood of Y,
- $h \in H^0(U_0, \mathcal{J}_X)$ such that $h_y \in \mathcal{J}_{X,y} \setminus \mathcal{I}_{X,y}$ for each $y \in Y \cap T(X)$.

$$\exists \zeta \in (\mathcal{M}(X) \cap \mathcal{C}^{\omega}(X)) \setminus \mathcal{O}(\mathbb{R}^n) \text{ and } Y \cap T(X) \subset \mathsf{O}(\zeta) \subset Y \cap \mathrm{Cl}(T(X)).$$

2.6. Winning family of denominators

Let $Y \subset \mathbb{R}^n$ be a C-analytic subset of \mathbb{R}^n and let $\widetilde{Y} \subset \Omega$ be an invariant Stein complexification of Y closed in an open neighborhood $\Omega \subset \mathbb{C}^n$ of \mathbb{R}^n . Write $\widetilde{Y} = \mathcal{Z}(P_1, \ldots, P_m)$ for some invariant $P_1, \ldots, P_m \in \mathcal{O}(\Omega)$.

Define

$$P_{\lambda} := \lambda_1 P_1^2 + \dots + \lambda_m P_m^2 \in \mathcal{O}(\Omega)$$

where $\lambda := (\lambda_1, \dots, \lambda_m) \in \mathcal{Q}_m := \{\lambda_1 > 0, \dots, \lambda_m > 0\} \subset \mathbb{R}^m$. If $\Omega \subset \mathbb{C}^n$ is a contractible invariant open Stein neighborhood of \mathbb{R}^n , we can find a square-free invariant $P_{\lambda}^* \in \mathcal{O}(\Omega)$ such that $P_{\lambda}^* | P_{\lambda}$ and $\mathcal{Z}(P_{\lambda}^*) = \mathcal{Z}(P_{\lambda})$.

Examples. (i) $Y := \{q\}$, $\widetilde{Y} := \{q\}$ and $P_i := \mathbf{x}_i - q_i$ for $i = 1, \ldots, n$.

(ii) $Y := \{y_k\}_{k \ge 1}$ is a discrete subset of T(X) and $\widetilde{Y} = Y$. If $Y = \mathbb{Z} \times \{(0, \stackrel{(n-1)}{\dots}, 0)\}$, we take $P_1(x) := \sin(2\pi x_1)$, $P_2(x) = x_2$, ..., $P_n(x) = x_n$.

2.7. Special global equations outside N(X) ('Almost numerators')

Theorem. Let $X \subset \mathbb{R}^n$ be a C-analytic set. Then there exists $h \in \mathcal{I}(X \setminus N(X))$ such that $\mathcal{Z}(h) = X \setminus N(X)$ and $h_x \in \mathcal{J}_{X,x} \setminus \mathcal{I}_{X,x}$ for each $x \in T(X) \setminus N(X)$.

2.7.1. *C*-analytic and Nash locally hypersurfaces

A C-analytic set $X \subset \mathbb{R}^n$ is a C-analytic locally hypersurface if for each $x \in \mathbb{R}^n$ the ideal $\mathcal{J}_{X,x}$ of $\mathcal{O}_{\mathbb{R}^n,x}$ is principal (in particular pure dimensional).

Remark. Not every C-analytic hypersurface is a C-analytic locally hypersurface.

Lemma. Let $X \subset \mathbb{R}^n$ be a C-analytic locally hypersurface. Then there exists $h \in \mathcal{O}(\mathbb{R}^n \backslash N(X))$ such that h_x generates the ideal $\mathcal{J}_{X,x}$ of $\mathcal{O}_{\mathbb{R}^n,x}$ for each $x \in \mathbb{R}^n \backslash N(X)$.

2.7.2. Winning equations around a *C*-analytic subset ('Numerators')

Let $X \subset \mathbb{R}^n$ be a C-analytic set and let $Y \subset X$ be a C-analytic subset.

(1) Let $h \in \mathcal{O}(\mathbb{R}^n \setminus N(X))$ be such that $\mathcal{Z}(h) = X \setminus N(X)$ and $h_x \in \mathcal{J}_{X,x} \setminus \mathcal{I}_{X,x}$ $\forall x \in T(X) \setminus N(X)$.

If $Y \subset X \setminus N(X)$, then $U_0 := \mathbb{R}^n \setminus N(X)$ is an open neighborhood of Y and $h \in \mathcal{O}(U_0)$ satisfies $\mathcal{Z}(h) = X \cap U_0$ and $h_y \in \mathcal{J}_{X,x} \setminus \mathcal{I}_{X,x} \ \forall x \in Y \cap T(X)$.

(2) If $Y = \{y_k\}_{k \geq 1}$ is a discrete set, $\forall y_k \in Y \cap T(X) \; \exists h_{k,y_k} \in \mathcal{J}_{X,y_k} \setminus \mathcal{I}_{X,y_k} \; \text{such that} \; \mathcal{Z}(h_{k,y_k}) = X_{y_k}. \; \forall y_k \in Y \setminus T(X) \; \text{let} \; h_{k,y_k} \in \mathcal{I}_{X,y_k} \; \text{be such that} \; \mathcal{Z}(h_{k,y_k}) = X_{y_k}.$

Let $\{V_k\}_{k\geq 1}$ be pairwise disjoint open neighborhoods in \mathbb{R}^n of the point y_k and h_k an analytic representative of h_{k,y_k} in $V_k \ \forall k\geq 1$. Define $U_0:=\bigsqcup_{k\geq 1}V_k$ and

$$h: U_0 \to \mathbb{R}, \ x \mapsto h_k(x) \text{ if } x \in V_k.$$

 $h \in \mathcal{O}(U_0)$ satisfies $\mathcal{Z}(h) = X \cap U_0$ and $h_y \in \mathcal{J}_{X,x} \setminus \mathcal{I}_{X,x} \ \forall x \in Y \cap T(X)$. No restriction with respect to the set N(X).

2.8. Proof of the Main Theorem

STEP 1. Initial preparation. Consider the exact sequence of sheaves

$$0 \to \mathcal{J}_X \to \mathcal{O}_{\mathbb{R}^n} \to \mathcal{O}_{\mathbb{R}^n}/\mathcal{J}_X \to 0$$

and the exact long corresponding sequence of global sections

$$0 \to H^0(\mathbb{R}^n, \mathcal{J}_X) \to H^0(\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n}) \to H^0(\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n}/\mathcal{J}_X) \to H^1(\mathbb{R}^n, \mathcal{J}_X) \to H^1(\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n})$$
$$\to \cdots \to H^p(\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n}) \to H^p(\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n}/\mathcal{J}_X) \to H^{p+1}(\mathbb{R}^n, \mathcal{J}_X) \to H^{p+1}(\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n}).$$

Cartan's theorem $\mathbf{B} \Longrightarrow H^p(\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n}) = 0 \ \forall p \geq 1 \Longrightarrow$

$$0 \to H^0(\mathbb{R}^n, \mathcal{J}_X) \to H^0(\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n}) \to H^0(\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n}/\mathcal{J}_X) \xrightarrow{\delta} H^1(\mathbb{R}^n, \mathcal{J}_X) \to 0.$$

 $H^0(\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n}) \to H^0(\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n}/\mathcal{J}_X)$ is surjective $\iff H^1(\mathbb{R}^n, \mathcal{J}_X) = 0$.

If X is coherent $\stackrel{\text{(Cartan's B)}}{\Longrightarrow} H^1(\mathbb{R}^n, \mathcal{J}_X) = 0$.

Purpose: X is non-coherent $\Longrightarrow H^1(\mathbb{R}^n, \mathcal{J}_X) \neq 0$.

2.8.1. Relations for 1-cocycle and 1-coboundary

Let $\mathfrak{U}:=\{U_0,U_1\}$ be an open covering of \mathbb{R}^n . Let \mathfrak{F} be a sheaf on \mathbb{R}^n .

Pick $i, j, k \in \{0, 1\}$ and $f_{ij} \in \mathcal{F}(U_i \cap U_j), f_{ik} \in \mathcal{F}(U_i \cap U_k), f_{jk} \in \mathcal{F}(U_j \cap U_k).$

1-cocycle relations: $f_{00} = 0$ on U_0 , $f_{11} = 0$ on U_1 and $f_{10} = -f_{01}$ on $U_0 \cap U_1$.

1-coboundary relations for $f_0 \in \mathcal{F}(U_0)$ and $f_1 \in \mathcal{F}(U_1)$:

$$U_0 \cap U_1 \iff f_{01} = f_1 - f_0,$$

$$U_1 \cap U_0 \iff f_{10} = f_0 - f_1.$$

A 1-cocycle

$$(f_{00}, f_{01}, f_{10}, f_{11}) = (0, f_{01}, -f_{01}, 0) \in \mathcal{F}(U_0 \cap U_0) \times \mathcal{F}(U_0 \cap U_1) \times \mathcal{F}(U_1 \cap U_0) \times \mathcal{F}(U_1 \cap U_1)$$

is a 1-coboundary $\iff \exists f_i \in \mathcal{F}(U_i) \text{ for } i \in \{0,1\} \text{ such that } f_{01} = f_1 - f_0.$

Step 2. Construction of an open covering $\mathfrak{U}:=\{U_0,U_1\}$ of X and a 1-cocycle $f_{01}\in H^0(U_0\cap U_1,\mathcal{J}_X)$ that is not a 1-coboundary.

By hypothesis we have a C-analytic set $Y \subset X$, $Y \subset U_0 \subset \mathbb{R}^n$ and $h \in \mathcal{O}(U_0)$ such that $\mathcal{Z}(h) = X \cap U_0$ and $h_y \in \mathcal{J}_{X,y} \setminus \mathcal{I}_{X,y} \ \forall y \in Y \cap T(X)$.

Let $\widetilde{Y} \subset \Omega \subset \mathbb{C}^n$ be a complexification of Y and let $P_1, \ldots, P_m \in \mathcal{O}(\Omega)$ be invariant such that $\widetilde{Y} = \mathcal{Z}(P_1, \ldots, P_m)$.

 $\mathfrak{U}:=\{U_0,U_1:=\mathbb{R}^n\setminus Y\}$ open covering of \mathbb{R}^n . Define

$$P_{\lambda}(\mathbf{z}) := \lambda_1 P_1^2 + \dots + \lambda_m P_m^2 \quad \text{and} \quad \left| f_{01,\lambda}(\mathbf{z}) := \frac{h(\mathbf{z})}{P_{\lambda}(\mathbf{z})} \in H^0(U_0 \cap U_1 = U_0 \setminus Y, \mathcal{J}_X) \right|$$

where $\lambda \in \Omega_m := \{\lambda_1 > 0, \dots, \lambda_m > 0\}.$

Let $f_0 \in H^0(U_0, \mathcal{J}_X)$ and $f_1 \in H^0(U_1, \mathcal{J}_X)$ be such that $f_{01,\lambda} = f_1 - f_0$ on $U_0 \cap U_1$.

$$g_{\lambda} := f_1 P_{\lambda} = h + f_0 P_{\lambda} \in \mathcal{O}(\mathbb{R}^n)$$
 and $g_{k,\lambda}|_{X} = 0$

If G_{λ} is an analytic extension to $\Omega' \subset \Omega \Longrightarrow G_{\lambda}|_{\widetilde{X} \cap \Omega'} = 0$.

Let $V_0 \subset \mathbb{C}^n$ be an open neighborhood of U_0 such that h, f_0 extend to invariant holomorphic functions H, F_0 on V_0 :

$$G_{\lambda}|_{V_0} = H + F_0 P_{\lambda}|_{V_0}.$$

We choose $\lambda_0 \in \mathcal{Q}_m$ such that $\dim_{\mathbb{C}}((\widetilde{X}_y \cap \mathcal{Z}(P_{\lambda_0,y}) \setminus \mathcal{Z}(H_y)) \geq 1 \ \forall y \in Y \cap T(X)$.

 $\forall y \in Y \cap T(X) \; \exists \beta^y : (-1,1) \to \widetilde{X} \; \text{analytic curve such that} \; \beta^y(0) = y \; \text{and} \; \beta^y((0,1)) \subset (\widetilde{X} \cap \mathcal{Z}(P_{\lambda_0})) \setminus \mathcal{Z}(H). \; \text{Then}$

$$G_{\lambda_0} \circ \beta^y = 0, P_{\lambda_0} \circ \beta^y = 0, H \circ \beta^y \neq 0$$

$$\leadsto 0 = G_{\lambda_0} \circ \beta^y = H \circ \beta^y + (F_0 \circ \beta^y)(P_{\lambda_0} \circ \beta^y) = H \circ \beta^y \quad !!!!!!$$

Conclusion: $f_{01,\lambda_0} \in H^0(U_0 \cap U_1, \mathcal{J}_X)$ is 1-cocycle that it is not a 1-coboundary. The obstruction concentrates at all the points of $Y \cap T(X)$.

Step 3. Construction of $\zeta \in \mathcal{C}^{\omega}(X) \setminus \mathcal{O}(X)$. (We use the 1-cocycle)

$$0 \longrightarrow H^{0}(U_{0}, \mathcal{J}_{X}) \times H^{0}(U_{1}, \mathcal{J}_{X}) \longrightarrow \mathcal{O}_{\mathbb{R}^{n}}(U_{0}) \times \mathcal{O}_{\mathbb{R}^{n}}(U_{1}) \longrightarrow H^{0}(U_{0}, \mathcal{O}_{\mathbb{R}^{n}}/\mathcal{J}_{X}) \times H^{0}(U_{1}, \mathcal{O}_{\mathbb{R}^{n}}/\mathcal{J}_{X}) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

We seek $(q_0,q_1)\in\mathcal{O}_{\mathbb{R}^n}(U_0)\times\mathcal{O}_{\mathbb{R}^n}(U_1)$ such that

$$\frac{h}{P_{\lambda_0}} = f_{01,\lambda_0} = q_1 - q_0 = \delta((q_0, q_1))$$

$$\Rightarrow h_{\lambda_0} := q_1 P_{\lambda_0} = h + q_0 P_{\lambda_0} \in \mathcal{O}(\mathbb{R}^n) \quad \& \quad q_0 := \frac{h_{\lambda_0} - h}{P_{\lambda_0}} \in \mathcal{O}(U_0).$$

Consider the exact sequence of coherent $\mathcal{O}_{\mathbb{R}^n}$ -sheaves

$$0 \to P_{\lambda_0}\mathcal{O}_{\mathbb{R}^n} \to \mathcal{O}_{\mathbb{R}^n} \to \mathcal{O}_{\mathbb{R}^n}/P_{\lambda_0}\mathcal{O}_{\mathbb{R}^n} \to 0.$$

Cartan's Theorem B \Longrightarrow

$$0 \to H^0(\mathbb{R}^n, P_{\lambda_0}\mathcal{O}_{\mathbb{R}^n}) \to H^0(\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n}) \to H^0(\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n}/P_{\lambda_0}\mathcal{O}_{\mathbb{R}^n}) \to 0 \quad \text{(exact)}$$

As $h \in H^0(\mathbb{R}^n, \mathcal{O}_{\mathbb{R}^n}/P_{\lambda_0}\mathcal{O}_{\mathbb{R}^n})$, $\exists h_{\lambda_0} \in \mathcal{O}(\mathbb{R}^n)$ such that $h_{\lambda_0} - h$ is a multiple of P_{λ_0} .

$$\begin{cases} q_0 := \frac{h_{\lambda_0} - h}{P_{\lambda_0}} \in \mathcal{O}(U_0), \\ q_1 := \frac{h_{\lambda_0}}{P_{\lambda_0}} \in \mathcal{O}(U_1) \end{cases} \text{ (because } \mathcal{Z}(P_{\lambda_0}) = Y \text{)} \qquad \delta((q_0, q_1)) = q_1 - q_0 = \frac{h}{P_{\lambda_0}} = f_{01}$$

SOUGHT FUNCTION.

$$q_{\lambda_0}: X \to \mathbb{R}, \ z \mapsto \begin{cases} q_0(z) & \text{if } z \in X \cap U_0 = X \setminus N(X), \\ q_1(z) & \text{if } z \in X \cap U_1 = X \setminus Y \end{cases} & \& \quad \left[\xi_{\lambda_0} = \frac{h_{\lambda_0}}{P_{\lambda_0}} \in \mathcal{M}(X) \right]$$

Step 4. $Y \cap T(X) \subset O(\xi_{\lambda_0}) \subset Y \cap Cl(T(X))$.

3. Semialgebraic case

Let $S \subset \mathbb{R}^n$ be a semialgebraic set and denote $\mathbf{x} := (\mathbf{x}_1, \dots, \mathbf{x}_n)$.

3.1. Differentiable semialgebraic functions

Definitions. A semialgebraic jet on S of order $p \geq 0$ is a collection of semialgebraic functions $F := (f_{\alpha})_{|\alpha| \leq p}$ on S ($\alpha := (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$ and $|\alpha| := \alpha_1 + \cdots + \alpha_n$). For each $a \in S$ write

$$T_a^p F := \sum_{|lpha| \leq p} rac{f_lpha(a)}{lpha!} (\mathbf{x} - a)^lpha \quad ext{and} \quad R_a^p F := f_0 - T_a^p F.$$

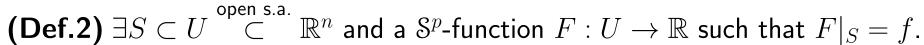
 $\mathcal{J}^p(S)$ is the set of all semialgebraic jets on S of order p. Consider the linear map

$$D^{\beta}: \mathcal{J}^p(S) \to \mathcal{J}^{p-|\beta|}(S), \ F := ((f_{\alpha})_{|\alpha| \le p}) \mapsto F_{\beta} := (f_{\gamma+\beta})_{|\gamma| \le p-|\beta|},$$

 $\forall \beta \in \mathbb{N}^n \text{ with } |\beta| \leq p.$

(**Def.1**) A continuous semialgebraic function $f: S \to \mathbb{R}$ is a \mathcal{C}^p semialgebraic function if there exists a semialgebraic jet $F:=(f_\alpha)_{|\alpha|\leq p}$ on S of order p such that $f_0=f$ and for each β with $|\beta|\leq p$ and every point $a\in S$ it holds $|R_x^{p-|\beta|}F_\beta(y)|=o(\|x-y\|^{p-|\beta|})$ for $x,y\in S$ when $x,y\to a$.

Other alternatives to define S^p -functions on a general semialgebraic set $S \subset \mathbb{R}^n$:



- (**Def.3**) $\forall x \in S \ \exists x \in U^x \overset{\text{open s.a.}}{\subset} \mathbb{R}^n$ and \mathbb{S}^p -function $F_x : U^x \to \mathbb{R}$ such that $F_x|_{U^x \cap S} = f|_{U^x \cap S}$.
- (**Def.4**) $\forall x \in S \ \exists x \in U^x \overset{\text{open s.a.}}{\subset} \mathbb{R}^n$ and \mathcal{C}^p function $F_x : U^x \to \mathbb{R}$ (non-necessarily semialgebraic) such that $F_x|_{U^x \cap S} = f|_{U^x \cap S}$.
- **(Def.5)** $\exists S \subset U \subset \mathbb{R}^n$ and a \mathcal{C}^p function $F: U \to \mathbb{R}$ such that $F|_S = f$.

$$(\mathsf{Def.2}) \Longrightarrow (\mathsf{Def.3}) \Longrightarrow (\mathsf{Def.4}) \iff (\mathsf{Def.5}) \ \mathsf{and} \ (\mathsf{Def.2}) \Longrightarrow (\mathsf{Def.1}).$$

3.1.1. Some relations

- (1) (Def.4) \Longrightarrow (Def.5), using a \mathbb{C}^p -partition of unity.
- (2) If $S \subset \mathbb{R}^n$ is compact, (Def.3) \Longrightarrow (Def.2) using an \mathbb{S}^p -partition of unity.
- (3) If $S \subset \mathbb{R}^n$ is closed, (Def.1) \Longrightarrow (Def.2) (Kurdyka-Pawłucki, Thamrongthanyalak).
- (4) If n=2 and $S \subset \mathbb{R}^n$ is closed, (Def.5) \Longrightarrow (Def.2) (Fefferman-Luli).
- (5) If p = 1, $n \ge 1$ and $S \subset \mathbb{R}^n$ is closed, (Def.5) \Longrightarrow (Def.2) (Aschenbrenner-Thamrongthanyalak).
- (6) Weak version of '(Def.5) \Longrightarrow (Def.2)' $(S \subset \mathbb{R}^n \text{ closed})$ via $t : \mathbb{N} \to \mathbb{N}$, which encodes a certain loss of differentiability: If there exist $S \subset U \subset \mathbb{R}^n$ and a $\mathfrak{C}^{t(p)}$ function on U such that $G|_S = f$, there exists an S^p -function F on U such that $F|_S = f$ (Bierstone-Campesato-Milman).
- (7) (Def.1) implies the existence of a $S^{p-1}(U)$ function F on an open semialgebraic neighborhood $U \subset \mathbb{R}^n$ of S.

3.2. Smooth semialgebraic functions and Nash functions

Classical result: smooth + semialgebraic function on a Nash manifold $S \subset \mathbb{R}^n \iff$ analytic + algebraic function on S.

Question: What happens in the general semialgebraic setting?

The ring of smooth semialgebraic functions on S is

$$S^{(\infty)}(S) := \bigcap_{p \ge 0} S^p(S)$$

where $S^p(S)$ is the ring of S^p functions on S.

Lemma. If $f \in S^{(\infty)}(S)$, $\forall x \in S \ \exists F_x \in \mathcal{N}_{\mathbb{R}^n,x}$ such that $F_x|_{S_x} = f_x$.

Definition. $\mathcal{N}(S) := H^0(S, (\mathcal{N}_{\mathbb{R}^n})|_S) = \varinjlim \mathcal{N}(V)|_S$ where $V \subset \mathbb{R}^n$ covers the open semialgebraic neighborhoods of S. We have $\mathcal{N}(S) \subset \mathcal{S}^{(\infty)}(S)$.

Problem. For which semialgebraic sets $S \subset \mathbb{R}^n$ do we have $\mathcal{N}(S) = \mathcal{S}^{(\infty)}(S)$?

3.3. Nash sets

Let $X \subset \mathbb{R}^n$ be a Nash set.

(1)
$$S^{(\infty)}(X) = \mathcal{C}^{\mathcal{N}}(X)$$
 and $\mathcal{N}(X) = H^0(X, \mathcal{N}_{\mathbb{R}^n}/\mathcal{I}_X^{\bullet})$.

(2)
$$S^{(\infty)}(X) = \mathcal{C}^{\mathcal{N}}(X) = \mathcal{N}(X) \iff X \text{ is coherent } (\mathcal{J}_{X,x}^{\bullet} = \mathcal{I}_{X,x}^{\bullet} \ \forall x \in X).$$

3.4. Semialgebraic sets

Let $S \subset \mathbb{R}^n$ be a semialgebraic set and define

$$\mathcal{J}_{S,x}^{ullet}:=\{f_x\in \mathfrak{N}_{\mathbb{R}^n,x}:\ S_x\subset \mathcal{Z}(f_x)\} \quad ext{and} \quad \mathfrak{C}^{\mathfrak{N}}(S):=H^0(S,\mathfrak{N}_{\mathbb{R}^n}/\mathcal{J}_S^{ullet}).$$

3.4.1. Ring of smooth semialgebraic functions

Theorem. Let $f: S \to \mathbb{R}$ be a function:

$$f \in \mathcal{S}^{(\infty)}(S) \iff f \in \mathcal{C}^{\mathcal{N}}(S) \iff f \text{ is semialgebraic}$$
 and $\forall x \in S \ \exists F_x \in \mathcal{N}_{\mathbb{R}^n,x} \text{ such that } F_x|_{S_x} = f_x.$

3.4.2. Ring of Nash functions

There exist $S \subset U \overset{\text{open s.a.}}{\subset} \mathbb{R}^n$ and a Nash set $X \subset \mathbb{R}^n$ such that: if $S \subset V \overset{\text{open s.a.}}{\subset} U$ and $Y \subset V$ is the Nash closure of S in V, there exists $S \subset W \overset{\text{open s.a.}}{\subset} V$ of S such that $Y \cap W = X \cap W$.

 $\mathcal{N}(S) = H^0(S, (\mathcal{N}_{\mathbb{R}^n}/\mathcal{I}_X^{\bullet})|_S) = \varinjlim \mathcal{N}(V)/\mathcal{I}^{\bullet}(X)\mathcal{N}(V)$ where $V \subset \mathbb{R}^n$ covers the open semialgebraic neighborhoods of S.

3.4.3. Smooth semialgebraic functions versus Nash functions

We have $\mathcal{I}_{X,x}^{\bullet} \subset \mathcal{J}_{S,x}^{\bullet}$ for each $x \in S$. Define $A(S) := \{x \in S : \mathcal{I}_{X,x}^{\bullet} \neq \mathcal{J}_{S,x}^{\bullet}\}$. $\mathcal{N}(S) = \mathcal{S}^{(\infty)}(S) \iff A(S) = \varnothing$

If
$$A(S)=\varnothing$$
, then $\mathcal{I}_{X,x}^{ullet}=\mathcal{J}_{S,x}^{ullet} \ \forall x\in S \ \text{and}$
$$\mathcal{S}^{(\infty)}(S)=\mathcal{C}^{\mathbb{N}}(S)=H^0(S,\mathbb{N}_{\mathbb{R}^n}/\mathcal{J}_S^{ullet})=H^0(S,(\mathbb{N}_{\mathbb{R}^n}/\mathcal{I}_X^{ullet})|_S)=\mathbb{N}(S).$$

Example. $S := \{x^2 - zy^2 = 0, z \ge 0\}$ (Whitney's umbrella with the handle erased) has $A(S) = \emptyset$.