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1. Introduction

1.1. Analytic case

Let {2 C R" be an open set. A subset X C () has the analytic extension property if

each analytic function f : X — R extends to an analytic function on ).

Problem. Which sets X C () have the analytic extension property?

Necessary condition. X is the zero set of an analytic function on ) ~» X is a
C-analytic set.

Example. The necessary condition is not sufficient. Consider Whitney's umbrella W :=
{y? — zz* =0} C R? and

’

5 if(z,y,2) #(0,0,-1),

f : W%Ra (CE,y,Z) — S
0 otherwise

\

is analytic on W, but does not extend analytically to R?.



X

W= {y* — 2z =0} CR® and §:=Z+1



A sufficient condition is provided by coherence and Cartan’'s Theorem B.

Coherence. A (C-analytic set X is coherent if its local equations at each point x € X

are generated by its global equations.
TIxz =Afr € Opny: Xo CZ(fy)} and Z(X) ={f € OR"): X C Z(f)}
X is coherent <= Jx, =2y, =Z(X)Opn, Vz € X

Cartan’s Theorem B (1957) = If X C () is a coherent C-analytic set, X has the

analytic extension property.

Theorem. A set X C () has the analytic extension property <= X is a coherent

analytic set.



1.2. Nash case

Semialgebraic set: Boolean combination of sets defined by polynomial equalities and

inequalities.
Semialgebraic function: Function with semialgebraic graph.

Nash function on an open semialgebraic set: Analytic + semialgebraic function

on an open semialgebraic set.

Nash manifold: smooth manifold 4+ semialgebraic set <= analytic manifold +

semialgebraic set.

Nash set: Zero set of a Nash function on an open semialgebraic set <= (-analytic

set + semialgebraic set.

Local Nash function on a Nash set: function on a Nash set that is the restriction

of a Nash function on an open neighborhood of each point.



Nash extension property: Let {2 C R" be an open semialgebraic set. A subset
X C () has the Nash extension property if each local Nash function f : X — R

extends to a Nash function defined on ().

Problem. Which sets X C () have the Nash extension property?

Necessary condition: X is a Nash set.

Example. The necessary condition is not sufficient. Consider Whitney's umbrella W :=
{y* — zz* =0} C R’ and

4 if(z,y,2) #(0,0,-1),

0 otherwise

f:W%Ra (Qf,y,Z)l%<

\

is local Nash on W, but does not extend to R as a Nash function.



A sufficient condition is provided by coherence and Nash Theorem B.

Coherence: A Nash set X is coherent if its local equations at each point z € X are
generated by its global equations.

Tz = {fo € Npoy: X, C2(fy)} and Z(X)* ={f eNR"): X C Z(f)}
X is coherent < Jy , =71%, =TI (X)Ng, Vo € X

Nash Theorem B (Coste-Ruiz-Shiota, 2000) = If X C 2 is a coherent Nash set,
X has the Nash extension property.

Theorem. X C () has the Nash extension property <= X is a coherent Nash set.

Remark. We ‘semialgebraically’ adapt the constructions done in the analytic case
avoiding cohomology arguments.

Bad ‘cohomological’ behavior in the Nash case: H'(R, Ng) # 0 (Hubbard, 1972).



1.3. Related problem: Whitney’s extension problem

Both previous problems are somehow related to Whitney's extension problem (1934)

both in the general and the semialgebraic setting. Some relevant names:
CP case (solved): Whitney, Glaeser, Bierstone, Milman, Pawtucki, Fefferman,. ...

CP semialgebraic case (not completely solved): Kurdyka, Pawtucki, Aschenbrenner,

Thamrongthanyalak, Fefferman, Luli, Bierstone, Campesato, Milman,. ..



2. Analytic case

2.1. Coherence and Cartan’s Theorems A & B

Coherence. A sheaf F of Ors-modules is coherent if:

(i) F is of finite type: Vo € R" 3 an open neighborhood U C R" of x, m € N* and
a surjective morphism Og.|; — F|y, and

(ii) the kernel of each homomorphism O%.|,, — F|y is of finite type for each p > 1

and each open subset V' of R".

Cartan’s Theorems A and B. describe the local-global behavior of coherent sheaves
F of Opn-modules:

(A) The stalks of a coherent sheaf & are spanned by the global sections.

(B) Each p-cohomology group of a coherent sheaf F is trivial for each p > 0.



Let X C R” be a C"-analytic subset:
CY := Orn/Jx is the sheaf of analytic functions germs on X

Ox = Orn/ZIx is the sheaf of global analytic functions germs on X.

Ty is the biggest coherent Ogn-sheaf of ideals with support X =—> Ogn /Ly is coherent.

0= Zx — Orn — Ore/Zxy — 0 (exact sequence coherent sheaves)

Cartan’s Theorem B — H!'(R",Zx) = 0 = The sequence
0 — H'R" Ix) = H'(R", Ops) = H'(R", Opn/Tx) — 0
Is exact.
O(X) = H(X, (Ori/Zx)|x) is the ring of global analytic functions on X
C¥(X) = HY X, (Ori/TJx)|x) is the ring of analytic functions on X .

Analytic extension property: A C-analytic set X C R" has the analytic extension
property if O(R") — C¥(X) is surjective.



2.2. Tails and points of non-coherence of a C-analytic set

Let X C R” be a C-analytic set.

2.2.1. Complexification of a C-analytic set.

Consider the coherent sheaf of Ocn-ideals Zxy ®r C on R"™. There exists an open
neighborhood () C C" of R" and a coherent sheaf F of Ocn-ideals on 2 such that
Flrn = Ix @r C = Z(X)Ocn|rn. A complexification X of X is the support of F.

2.2.2. Regular and singular points in the analytic setting

v € X is a regular point of X if O(X),_ is a regular local ring. If one between
O(X)m,, Ores/Ixz, Ocnz/(Ix. @r C), O(X)y, is regular, all are regular.

Reg(X) = Reg(j(/ )N X ~> set of regular points of X.

~

Sing(X) := X \ Reg(X) = Sing(X) N X ~- singular locus of X is a C-analytic set

~

and dim(Sing(X)) < dim(X) (because dim(Sing(X)) < dim(X)).



2.2.3. (-semianalytic sets

A C-semianalytic subset .S of R" is a locally finite union of basic C'-semianalytic subsets
of R" ~» {f=0,91 >0,...,9. >0} where r > 1 and f, g; € O(R").

2.2.4. Set of ‘tails’ of a (-analytic set

T(X)={xe X: Jx.# Lx,}is the set of 'tails’ of X ~» T(X) C Sing(X) is a
C'-semianalytic set of dimension dim(7'(X)) < dim(X).

2.2.5. Set of points of non-coherence.

The set N(X) of points of non-coherence of X is the set of points € X such

. open .
that Jy is not of finite type at = (for each x € U C X the restricted sheaf Jx|u

is not of finite type) ~» N(X) is a closed C-semianalytic subset of X of dimension
< dim(X) — 2.



2.2.6. Properties of ‘tails’ and points of non-coherence

Let X C R" be a C-analytic set.

(1) Vo € N(X) 3 an analytic arc a : (—1,1) — X such that «(0) = z, a((0,1)) C
T(X)\ NX

).
(2) CI(T' (X))

CHIT(X)\ N(X))=T(X)UN(X).

(3) X is coherent <—= T(X)=9 < N(X)=9

(4) If S is a connected component of CL(T(X)), then SN N(X) # @.
(5) dim(N(X),) < dim(T(X),) < dim(Sing(X),) for each z € N(X).

(6) N(X)NT(X) may be non-empty, even if X is C-irreducible. Consider X :
{(@* =y =2 (y—2)—2" = 0} » T(X) = {2°~y*—2° = 0,2~y > 0}U{(0,0,0)}
and N(X) = {(0,0,0)}.

(7) A general idea in Real Geometry is that non-coherence arises when the irreducible

components of the objects are not pure dimensional.



(1), (2), (3), (4) with ‘Real Vision Glasses' YO~




(1), (2), (3), (4) with ‘Imaginary Vision Glasses' @@~
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(6)

={(@&® -y’ =)y —2) — 2" = 0}
N(X)NT(X) =1(0,0,0); # &



2.3. Examples of pure dimensional non-coherent C-analytic sets

(i) Galbiati-Hironaka: X = {z(x + y)(2* + *) —2* = 0} C R® ~ N(X) =
{(0,0,0)}, Sing(X) ={x =0,y =0} and T(X) = Sing(X) \ N(X).

(ii) Galbiati-Hironaka (modified): X = {2*(z + y)?(2* + y*) — 2% = 0} C R*
o N( ) = {(0,0,0)}, Sing(X) = {x = 0,yz = 0} and T(X) = {x = 0,y =

LN

N



(iii) Birdie non-coherent singularity: X = {(2? + zp°)z — y* = 0} C R? ~

N(X)=1{(0,0,0)}, Sing(X) ={z =0,y =0} and T(X) = Sing(X) N {z < 0}.

(iv) Fake blanket: X = {(z* + 2%%)z — y* = 0} C R® ~ N(X) = {(0,0,0)},
Sing(X) ={x =0,y =0} and T(X) = Sing(X) \ N(X).




2.4. Obstructing set of a meromorphic function

(1) Let X be a C-analytic subset of R”, let ( : X — R and x € X such that
fz, g € Opn, satisfying ¢, = % and g, does not belong to a minimal prime of Jx ,.

J
g_x = —Q, < OR”,;U < faz + Qrgr € jX,x < fﬂ? S nganx + anx'
x

(2) Let {X;}ier be the C-analytic irreducible components of the C-analytic set X
and let ¢ := 5 € M(X) such that f, g € O(R") and g|x, # 0 for each i € I.

( = g = —alx where a € O(R") <= f € gOR")+Z(X)

— [+ € .0r0» + Z(X)Orny = ¢:0rny + Lx, Vr € X

Obstructing set of ( = g e M(X):0) ={z e X: f. € 9.O0rs+ZIx,}
(closed subset of X).

Remark. ( € M(X) has an analytic extension to R" <— 0(() = @.



2.5. Main Theorem

Theorem. Let X C R" be a C-analytic set with N(X) # &. Let

m Y C X be a C-analytic subset that contains no irreducible component of X and
meets T'(X),

s Uy C R" an open neighborhood of Y,
= h € H(Uy, Jx) such that h, € Jx, \ Zx, foreachy € Y NT(X).

3¢ € (M(X) N C“(X))\ OR?) and Y N T(X) € 0(¢) € ¥ N CIT(X)).



2.6. Winning family of denominators

Let Y C R” be a C-analytic subset of R" and let Y C Q be an invariant Stein

complexification of Y closed in an open neighborhood €2 C C" of R". Write Y =
Z(Py, ..., P,) for some invariant Py,..., P, € O(12).

Define
Py = MNP+ 4+ A\ Pa € O(Q)
where A == (A1,..., ) € Q= { A >0,....0\, >0 CR™" IfQ C C"is

a contractible invariant open Stein neighborhood of R", we can find a square-free
invariant Py € O(Q) such that P}| P, and Z(P5) = Z(P)).

Examples. ()Y :={¢}, Y :={¢}and P, =x; —q; fori=1,...,n.

(i) Y := {ys i1 is a discrete subset of T(X ) and Y = Y. If Y = Z x {(0, "D, 0)},
we take Pi(x) :=sin(2nxy), Po(x) = x9, ..., Py(x) = x),.



2.7. Special global equations outside N(X) (‘Almost numerators’)

Theorem. Let X C R" be a C-analytic set. Then there exists h € Z(X \ N(X))
such that Z(h) = X \ N(X) and h, € Jx, \ Ix, for each x € T(X)\ N(X).

2.7.1. (C-analytic and Nash locally hypersurfaces

A C-analytic set X C R" is a C-analytic locally hypersurface if for each x € R" the

ideal Jx , of O, is principal (in particular pure dimensional).

Remark. Not every C-analytic hypersurface is a C-analytic locally hypersurface.

Lemma. Let X C R" be a C-analytic locally hypersurface. Then there exists h €
O(R"\ N(X)) such that h, generates the ideal Jx , of Orn , foreachx € R"\ N(X).



2.7.2. Winning equations around a C-analytic subset (‘Numerators’)

Let X C R" be a C-analytic set and let Y C X be a ("-analytic subset.

(1) Let h € O(R" \ N(X)) be such that Z(h) = X \ N(X) and h; € Tx. \ Zx.
Ve e T(X)\ N(X).

If Y ¢ X\ N(X), then Uy := R"\ N(X) is an open neighborhood of Y and
h € O(U,) satisfies Z(h) = X NUjand h, € Tx. \Ix. Ve e Y NT(X).

(2) f Y = {yr}i>1 is a discrete set, Yy, € Y NT(X) Jhi,, € Txy, \ Lx,y, such
that Z(hy,,) = Xy, Yyr € Y \ T(X) let hy,, € Zx,, be such that Z(hy,,) = X,,.

Let {V;}i>1 be pairwise disjoint open neighborhoods in R™ of the point ¥ and hy an
analytic representative of Ay, in Vi, V& > 1. Define Uy := |_|,€21 V). and

h:Uy— R, x— hy(z)if x € V.

h € O(Uy) satisfies Z(h) = X NUp and h, € Tx . \ Lx. Vx € Y NT(X).
No restriction with respect to the set N(X).



2.8. Proof of the Main Theorem

STEP 1. Initial preparation. Consider the exact sequence of sheaves

0= Tx = Ore — Ore/Tx — 0
and the exact long corresponding sequence of global sections

0 — H'R", Jx) = H'R", Ogn) — H'(R", Ope/Tx) — H'(R", Tx) — H(R", Ogn)
— - = HP(R", Ogn) — HP(R", Opn/ Jx) — HPTY(R", Tx) = HPTHR", Ogn).

Cartan’s theorem B — H?(R", Og») =0Vp > 1 =

0 — H'R", Jx) — H'R", Ogs) — HR", Oga/Tx) — HY(R", Tx) — 0.
H(R", Ogn) — H(R", Orn/Jx) is surjective < H(R", Jx) = 0.
If X is coherent | ®) HY(R", Jx) = 0.

Purpose: X is non-coherent = H'(R", Jx) # 0.



2.8.1. Relations for 1-cocycle and 1-coboundary

Let 4 := {Uy, U1} be an open covering of R". Let F be a sheaf on R".

Pick 7,7,k € {0,1} and f;; € F(U; N U;), fi. € F(U; N U), fir. € F(U; N UY).
1-cocycle relations: foo = 0 on Uy, fi1 = 0on Uy and fig = — fo1 on Uy N Uj.

l-coboundary relations for fy € F(Uj) and f; € F(U;):

UNU ~ for = f1— Jo
UrnUy ~ fio= Jfo— J1.
A 1-cocycle

(foo, for, f10, f11) = (0, for, = fo1,0) € F(Up NUy) x F(Ug NUy) x F(U1 NUy) x F(U; NUY)

is a 1-coboundary <— df; € ?(UZ) for ¢ € {O, 1} such that fy; = f1 — fo.



STEP 2. Construction of an open covering 4 = {Uy,U;} of X and a 1-cocycle
for € H'(UyN Uy, Jx) that is not a 1-coboundary.

By hypothesis we have a C-analyticset Y C X, Y C U, C R”and h € O(Uy) such
that Z(h) =X NUjand h, € Tx, \Zx, Vy e Y NT(X).

letY cQ C C'bea complexification of Y and let Py, ..., P, € O({)) be invariant
such that Y = Z(Py, ..., By,).

= {Uy,U; :=R"\ Y} open covering of R". Define

h(z)
P)\(Z>

Py(z) = M P{+- -+, P2 and | fora(z) == c H(UyNU, = Uy \ Y, Jx)

where A € Q,,, .= {\{ >0,..., A\, > 0}.

Let fo € H'(Up, Jx) and f; € HY(Uy, Jx) be such that foia=fi— foon UyNUj.
g = fiPx=h+ foP\ € O(R") and gpx|x =0

If G is an analytic extension to Q' C Q) = G|z = 0.



Let Vi C C" be an open neighborhood of Uj such that h, f; extend to invariant
holomorphic functions H, F on Vj:

GA’VO = H + FOP)\‘%.

We choose A € Q,, such that dime((X, N Z(Py,)\ Z(H,)) > 1Yy e Y NT(X).

Yy € Y NT(X) 38Y : (—1,1) — X analytic curve such that 8%(0) = y and
8Y((0,1)) C (X N Z(Py)) \ Z(H). Then

Gy ofB'=0,P 08 =0,HopB +£0
v 0= G, 0 8" = Ho B+ (Fyo)(PyoB) = Hop" I

Conclusion: fy ,, € H(UyN Uy, Jx) is 1-cocycle that it is not a 1-coboundary.

The obstruction concentrates at all the points of Y N T'(X).



STEP 3. Construction of ( € C¥(X )\ O(X). (We use the 1-cocycle)

0— H(Uy, Tx) x H(Uy, Tx) — Ore(Uy) X Opn(Uy) —H"(Uy, Opn/ Tx) x H(Uy, Opn/ Tx) —0

| |

|

HO(U() N Uy, ORn/jx)

(l9o}; [q1])

0 HO(UoﬂUl,jX) ORn<U0ﬂU1)
(f()?fl)* (f())fl)
| I
fi— Jfor Ji—Jo
(QOTCh)
q1 — qo*

We seek (qo, 1) € Orn(Up) X Ogrn(Uy) such that

h

5o = Join = a1 — a0 = 0(q0. a1))
Ao

~ h>\o = q1P>\O = h + quAO - O(Rn>

[Ch — C]o}

hy, — h
Py

& qo:= c O(U).

0



Consider the exact sequence of coherent Ogn-sheaves

O — P)\OORTL — ORn — ORn/P)\OORn — O

Cartan’s Theorem B =—>

0 — H(R", P\ Or:) — H(R", Ops) — H°(R", Oga/P),Orn) — 0 (exact)

As h € H(R", Ogn/Py,Ogrn), Jhy, € O(R") such that hy, — h is a multiple of Py,

( ) hAo

qo ‘=

e O(Uy), h

& 6((q0,q1)) = 1—qo = = = fo
q = Z—io c O(U,) (because Z(P),) =Y) P,

\

SOUGHT FUNCTION.

)
z) ifzeXNUy=X\N
QAOZX%R,,ZH<QO<) ! 0 =X\ N(X), & e = Mg pqx)

@(z) fzeXnNU=X\Y P,

\

STEP 4. Y NT(X) C 0(&),) CY NCIT(X)).



3. Semialgebraic case

Let S C R” be a semialgebraic set and denote x == (x1,...,%,).

3.1. Differentiable semialgebraic functions

Definitions. A semialgebraic jet on S of order p > 0 is a collection of semialgebraic
functions I := (fa)a1<p on S (o := (ou,..., ) € N" and o] == aq + - - + ay,).
For each a € S write

TVF =) J ‘“('a) (x—a)® and RPF := fy—TPF.
0%

la|<p

JP(S) is the set of all semialgebraic jets on S of order p. Consider the linear map

D? gP(S) — TP NS), Fi=((fa)lal<p) = Fs = (Fr48) <1l
V3 e N" with || < p.



(Def.1) A continuous semialgebraic function f : S — R is a CP semialgebraic function if
there exists a semialgebraic jet F' := (f,)jq|<p On S of order p such that fy = f
and for each 8 with |5| < p and every point @ € S it holds ]R];_'mFg(y)\ =

o(||x — y|[P~1°) for z,y € S when 2,y — a.

Other alternatives to define 8”-functions on a general semialgebraic set S C R"™:

-,
(Def.2) 43S C U CT R” and a $P-function F: U — R such that Fls=f.
(Def.3) Ve € S 3z € U* ¢ R" and 8-function F, : U* — R such that F|peng =

f|U$ﬂS-

d

pen s.a. _ _
C R” and C? function F, : U* — R (non-necessarily

(Defd)Vz € S 3x € U*
semialgebraic) such that F,|y=ns = f|u=ns.

(Def.5) 43S C U C" R” and a @ function F: U — R such that Flg=f.

(Def.2) —> (Def.3) —> (Def.4) < (Def.5) and (Def.2) = (Def.1).



3.1.1. Some relations

(1) (Def.4) — (Def.5), using a CP-partition of unity.

(2) If S C R" is compact, (Def.3) = (Def.2) using an 8P-partition of unity.
(3) If S C R" is closed, (Def.1) —> (Def.2) (Kurdyka-Pawtucki, Thamrongthanyalak).
(4) If n=2and S C R" is closed, (Def.5) = (Def.2) (Fefferman-Luli).

(5) |fp = 1, n >1and § C R" is closed, (Def.5) — (Def.2) (Aschenbrenner-
Thamrongthanyalak).

(6) Weak version of ‘(Def.5) — (Def.2)’ (S C R” closed) via t : N — N, which

open s.a.
encodes a certain loss of differentiability: If there exist S C U ~ C R" and a C'?)
function on U such that G|s = f, there exists an S8P-function F' on U such that

F’S = f (Bierstone-Campesato-Milman).

(7) (Def.1) implies the existence of a 8”~*(U) function I’ on an open semialgebraic
neighborhood U C R" of S.



3.2. Smooth semialgebraic functions and Nash functions

Classical result: smooth + semialgebraic function on a Nash manifold S C R" <=

analytic + algebraic function on S.
Question: What happens in the general semialgebraic setting?

The ring of smooth semialgebraic functions on S is

$)(S) =) 8(3)

where 8P(S) is the ring of &” functions on S.

Lemma. If f € §()(S), Vo € S 3F, € Ngu,, such that F,|s. = f..

Definition. N(S) := HY(S, (Ngn)|s) = Im N(V)|s where V' C R" covers the open
—
semialgebraic neighborhoods of S. We have N(S) C 8(>)(S).

Problem. For which semialgebraic sets S C R" do we have N(S) = §(®)(S)?



3.3. Nash sets

Let X C R" be a Nash set.
(1) $©)(X) = N(X) and N(X) = HY(X, N+ /T%).
(2) 8I)(X) = N(X) =N(X) <= X is coherent (Jy , = I%, Vo € X).

3.4. Semialgebraic sets

Let S C R" be a semialgebraic set and define

Tew={fe €ENry: S CZ(f,)} and CN(S):= H(S,Nri/T3).

3.4.1. Ring of smooth semialgebraic functions

Theorem. Let f : S — R be a function:

fe8™@(S) «— feNS) < f issemialgebraic
andVx € S AF, € Nga, such that F,|s = f,.



3.4.2. Ring of Nash functions

open s.a.

There exist S C U OpenCS'a' R"™ and a Nash set X C R" suchthat: f S CV C

open s.a.

and Y C V is the Nash closure of S in V, there exists S C W C V of S such
that Y NIV =X NW.

N(S) = HS, (Nre/Z%)|s) = hl)nN(V)/I’(X)N(V) where V' C R" covers the

open semialgebraic neighborhoods of S.

3.4.3. Smooth semialgebraic functions versus Nash functions

We have Z% , C J¢, for each z € S. Define A(S) :={x € S: I%, # J3.}.
N(S) = 80)(8) «—= A(S)=o
If A(S) =, then I% = Jg, Vr € S and
8(8) = €N(S) = H(S, N/ T§) = H(S, New /T ) 5) = N(S).

Example. S := {2° — 2y = 0,2 > 0} (Whitney's umbrella with the handle erased)
has A(S) = @.



