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1. Introduction

1.1. Analytic case

Let Ω ⊂ Rn be an open set. A subset X ⊂ Ω has the analytic extension property if

each analytic function f : X → R extends to an analytic function on Ω.

Problem. Which sets X ⊂ Ω have the analytic extension property?

Necessary condition. X is the zero set of an analytic function on Ω ⇝ X is a

C-analytic set.

Example. The necessary condition is not sufficient. Consider Whitney’s umbrella W :=

{y2 − zx2 = 0} ⊂ R3 and

f : W → R, (x, y, z) 7→

 x
z+1 if (x, y, z) ̸= (0, 0,−1),

0 otherwise

is analytic on W , but does not extend analytically to R3.



•

W := {y2 − zx2 = 0} ⊂ R3 and ξ :=
x

z + 1



A sufficient condition is provided by coherence and Cartan’s Theorem B.

Coherence. A C-analytic set X is coherent if its local equations at each point x ∈ X

are generated by its global equations.

JX,x := {fx ∈ ORn,x : Xx ⊂ Z(fx)} and I(X) := {f ∈ O(Rn) : X ⊂ Z(f )}

X is coherent ⇐⇒ JX,x = IX,x := I(X)ORn,x ∀x ∈ X

Cartan’s Theorem B (1957) =⇒ If X ⊂ Ω is a coherent C-analytic set, X has the

analytic extension property.

Theorem. A set X ⊂ Ω has the analytic extension property ⇐⇒ X is a coherent

analytic set.



1.2. Nash case

Semialgebraic set: Boolean combination of sets defined by polynomial equalities and

inequalities.

Semialgebraic function: Function with semialgebraic graph.

Nash function on an open semialgebraic set: Analytic + semialgebraic function

on an open semialgebraic set.

Nash manifold: smooth manifold + semialgebraic set ⇐⇒ analytic manifold +

semialgebraic set.

Nash set: Zero set of a Nash function on an open semialgebraic set ⇐⇒ C-analytic

set + semialgebraic set.

Local Nash function on a Nash set: function on a Nash set that is the restriction

of a Nash function on an open neighborhood of each point.



Nash extension property: Let Ω ⊂ Rn be an open semialgebraic set. A subset

X ⊂ Ω has the Nash extension property if each local Nash function f : X → R
extends to a Nash function defined on Ω.

Problem. Which sets X ⊂ Ω have the Nash extension property?

Necessary condition: X is a Nash set.

Example. The necessary condition is not sufficient. Consider Whitney’s umbrella W :=

{y2 − zx2 = 0} ⊂ R3 and

f : W → R, (x, y, z) 7→

 x
z+1 if (x, y, z) ̸= (0, 0,−1),

0 otherwise

is local Nash on W , but does not extend to R3 as a Nash function.



A sufficient condition is provided by coherence and Nash Theorem B.

Coherence: A Nash set X is coherent if its local equations at each point x ∈ X are

generated by its global equations.

J •
X,x := {fx ∈ NRn,x : Xx ⊂ Z(fx)} and I(X)• := {f ∈ N(Rn) : X ⊂ Z(f )}

X is coherent ⇐⇒ J •
X,x = I•

X,x := I•(X)NRn,x ∀x ∈ X

Nash Theorem B (Coste-Ruiz-Shiota, 2000) =⇒ If X ⊂ Ω is a coherent Nash set,

X has the Nash extension property.

Theorem. X ⊂ Ω has the Nash extension property ⇐⇒ X is a coherent Nash set.

Remark. We ‘semialgebraically’ adapt the constructions done in the analytic case

avoiding cohomology arguments.

Bad ‘cohomological’ behavior in the Nash case: H1(R,NR) ̸= 0 (Hubbard, 1972).



1.3. Related problem: Whitney’s extension problem

Both previous problems are somehow related to Whitney’s extension problem (1934)

both in the general and the semialgebraic setting. Some relevant names:

Cp case (solved): Whitney, Glaeser, Bierstone, Milman, Paw lucki, Fefferman,. . . .

Cp semialgebraic case (not completely solved): Kurdyka, Paw lucki, Aschenbrenner,

Thamrongthanyalak, Fefferman, Luli, Bierstone, Campesato, Milman,. . .



2. Analytic case

2.1. Coherence and Cartan’s Theorems A & B

Coherence. A sheaf F of ORn-modules is coherent if:

(i) F is of finite type: ∀x ∈ Rn ∃ an open neighborhood U ⊂ Rn of x, m ∈ N∗ and

a surjective morphism Om
Rn|U → F|U , and

(ii) the kernel of each homomorphism Op
Rn|V → F|V is of finite type for each p ≥ 1

and each open subset V of Rn.

Cartan’s Theorems A and B. describe the local-global behavior of coherent sheaves

F of ORn-modules:

(A) The stalks of a coherent sheaf F are spanned by the global sections.

(B) Each p-cohomology group of a coherent sheaf F is trivial for each p > 0.



Let X ⊂ Rn be a C-analytic subset:

Cω
X := ORn/JX is the sheaf of analytic functions germs on X

OX := ORn/IX is the sheaf of global analytic functions germs on X .

IX is the biggest coherentORn-sheaf of ideals with supportX =⇒ORn/IX is coherent.

0 → IX → ORn → ORn/IX → 0 (exact sequence coherent sheaves)

Cartan’s Theorem B =⇒ H1(Rn, IX) = 0 =⇒ The sequence

0 → H0(Rn, IX) → H0(Rn,ORn) → H0(Rn,ORn/IX) → 0

is exact.

O(X) := H0(X, (ORn/IX)|X) is the ring of global analytic functions on X

Cω(X) := H0(X, (ORn/JX)|X) is the ring of analytic functions on X.

Analytic extension property: A C-analytic set X ⊂ Rn has the analytic extension

property if O(Rn) → Cω(X) is surjective.



2.2. Tails and points of non-coherence of a C-analytic set

Let X ⊂ Rn be a C-analytic set.

2.2.1. Complexification of a C-analytic set.

Consider the coherent sheaf of OCn-ideals IX ⊗R C on Rn. There exists an open

neighborhood Ω ⊂ Cn of Rn and a coherent sheaf F of OCn-ideals on Ω such that

F|Rn = IX ⊗R C = I(X)OCn|Rn. A complexification X̃ of X is the support of F.

2.2.2. Regular and singular points in the analytic setting

x ∈ X is a regular point of X if O(X)mx
is a regular local ring. If one between

O(X)mx
, ORn,x/IX,x, OCn,x/(IX,x ⊗R C), O(X̃)nx is regular, all are regular.

Reg(X) = Reg(X̃) ∩X ⇝ set of regular points of X .

Sing(X) := X \ Reg(X) = Sing(X̃) ∩X ⇝ singular locus of X is a C-analytic set

and dim(Sing(X)) < dim(X) (because dim(Sing(X̃)) < dim(X̃)).



2.2.3. C-semianalytic sets

A C-semianalytic subset S of Rn is a locally finite union of basic C-semianalytic subsets

of Rn ⇝ {f = 0, g1 > 0, . . . , gr > 0} where r ≥ 1 and f, gi ∈ O(Rn).

2.2.4. Set of ‘tails’ of a C-analytic set

T (X) := {x ∈ X : JX,x ̸= IX,x} is the set of ‘tails’ of X ⇝ T (X) ⊂ Sing(X) is a

C-semianalytic set of dimension dim(T (X)) < dim(X).

2.2.5. Set of points of non-coherence.

The set N(X) of points of non-coherence of X is the set of points x ∈ X such

that JX is not of finite type at x (for each x ∈ U
open
⊂ X the restricted sheaf JX|U

is not of finite type) ⇝ N(X) is a closed C-semianalytic subset of X of dimension

≤ dim(X)− 2.



2.2.6. Properties of ‘tails’ and points of non-coherence

Let X ⊂ Rn be a C-analytic set.

(1) ∀x ∈ N(X) ∃ an analytic arc α : (−1, 1) → X such that α(0) = x, α((0, 1)) ⊂
T (X) \N(X).

(2) Cl(T (X)) = Cl(T (X) \N(X)) = T (X) ∪N(X).

(3) X is coherent ⇐⇒ T (X) = ∅ ⇐⇒ N(X) = ∅

(4) If S is a connected component of Cl(T (X)), then S ∩N(X) ̸= ∅.

(5) dim(N(X)x) < dim(T (X)x) ≤ dim(Sing(X)x) for each x ∈ N(X).

(6) N(X) ∩ T (X) may be non-empty, even if X is C-irreducible. Consider X :=

{(x2−y2−x3)2(y−x)−z2 = 0}⇝ T (X) = {x2−y2−x3 = 0, x−y > 0}∪{(0, 0, 0)}
and N(X) = {(0, 0, 0)}.

(7) A general idea in Real Geometry is that non-coherence arises when the irreducible

components of the objects are not pure dimensional.



(1), (2), (3), (4) with ‘Real Vision Glasses’

•

X

Sing(X)?



(1), (2), (3), (4) with ‘Imaginary Vision Glasses’

•

X

N(X)T (X)

T (X) ∪N(X) ⊂ Sing(X)

Happy
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(6)

X := {(x2 − y2 − x3)2(y − x)− z2 = 0}
N(X) ∩ T (X) = {(0, 0, 0)} ̸= ∅



2.3. Examples of pure dimensional non-coherent C-analytic sets

(i) Galbiati-Hironaka: X := {z(x + y)(x2 + y2) − x4 = 0} ⊂ R3 ⇝ N(X) =

{(0, 0, 0)}, Sing(X) = {x = 0, y = 0} and T (X) = Sing(X) \N(X).

(ii) Galbiati-Hironaka (modified): X := {z2(x + y)2(x2 + y2) − x6 = 0} ⊂ R3

⇝ N(X) = {(0, 0, 0)}, Sing(X) = {x = 0, yz = 0} and T (X) = {x = 0, y =

0} \N(X).



(iii) Birdie non-coherent singularity: X := {(x2 + zy2)x − y4 = 0} ⊂ R3 ⇝

N(X) = {(0, 0, 0)}, Sing(X) = {x = 0, y = 0} and T (X) = Sing(X) ∩ {z < 0}.

(iv) Fake blanket: X := {(x2 + z2y2)x − y4 = 0} ⊂ R3 ⇝ N(X) = {(0, 0, 0)},

Sing(X) = {x = 0, y = 0} and T (X) = Sing(X) \N(X).



2.4. Obstructing set of a meromorphic function

(1) Let X be a C-analytic subset of Rn, let ζ : X → R and x ∈ X such that

∃fx, gx ∈ ORn,x satisfying ζx =
fx
gx

and gx does not belong to a minimal prime of JX,x.

fx
gx

= −ax ∈ ORn,x ⇐⇒ fx + axgx ∈ JX,x ⇐⇒ fx ∈ gxORn,x + JX,x.

(2) Let {Xi}i∈I be the C-analytic irreducible components of the C-analytic set X

and let ζ := f
g ∈ M(X) such that f, g ∈ O(Rn) and g|Xi

̸= 0 for each i ∈ I.

ζ =
f

g
= −a|X where a ∈ O(Rn) ⇐⇒ f ∈ gO(Rn) + I(X)

=⇒ fx ∈ gxORn,x + I(X)ORn,x = gxORn,x + IX,x ∀x ∈ X

Obstructing set of ζ = f
g ∈ M(X): O(ζ) := {x ∈ X : fx ̸∈ gxORn,x + IX,x}

(closed subset of X).

Remark. ζ ∈ M(X) has an analytic extension to Rn ⇐⇒ O(ζ) = ∅.



2.5. Main Theorem

Theorem. Let X ⊂ Rn be a C-analytic set with N(X) ̸= ∅. Let

Y ⊂ X be a C-analytic subset that contains no irreducible component of X and

meets T (X),

U0 ⊂ Rn an open neighborhood of Y ,

h ∈ H0(U0,JX) such that hy ∈ JX,y \ IX,y for each y ∈ Y ∩ T (X).

∃ζ ∈ (M(X) ∩ Cω(X)) \ O(Rn) and Y ∩ T (X) ⊂ O(ζ) ⊂ Y ∩ Cl(T (X)).



2.6. Winning family of denominators

Let Y ⊂ Rn be a C-analytic subset of Rn and let Ỹ ⊂ Ω be an invariant Stein

complexification of Y closed in an open neighborhood Ω ⊂ Cn of Rn. Write Ỹ =

Z(P1, . . . , Pm) for some invariant P1, . . . , Pm ∈ O(Ω).

Define

Pλ := λ1P
2
1 + · · · + λmP

2
m ∈ O(Ω)

where λ := (λ1, . . . , λm) ∈ Qm := {λ1 > 0, . . . , λm > 0} ⊂ Rm. If Ω ⊂ Cn is

a contractible invariant open Stein neighborhood of Rn, we can find a square-free

invariant P ∗
λ ∈ O(Ω) such that P ∗

λ |Pλ and Z(P ∗
λ ) = Z(Pλ).

Examples. (i) Y := {q}, Ỹ := {q} and Pi := xi − qi for i = 1, . . . , n.

(ii) Y := {yk}k≥1 is a discrete subset of T (X) and Ỹ = Y . If Y = Z×{(0, (n−1). . . , 0)},

we take P1(x) := sin(2πx1), P2(x) = x2, . . . , Pn(x) = xn.



2.7. Special global equations outside N(X) (‘Almost numerators’)

Theorem. Let X ⊂ Rn be a C-analytic set. Then there exists h ∈ I(X \ N(X))

such that Z(h) = X \N(X) and hx ∈ JX,x \ IX,x for each x ∈ T (X) \N(X).

2.7.1. C-analytic and Nash locally hypersurfaces

A C-analytic set X ⊂ Rn is a C-analytic locally hypersurface if for each x ∈ Rn the

ideal JX,x of ORn,x is principal (in particular pure dimensional).

Remark. Not every C-analytic hypersurface is a C-analytic locally hypersurface.

Lemma. Let X ⊂ Rn be a C-analytic locally hypersurface. Then there exists h ∈
O(Rn\N(X)) such that hx generates the ideal JX,x ofORn,x for each x ∈ Rn\N(X).



2.7.2. Winning equations around a C-analytic subset (‘Numerators’)

Let X ⊂ Rn be a C-analytic set and let Y ⊂ X be a C-analytic subset.

(1) Let h ∈ O(Rn \N(X)) be such that Z(h) = X \N(X) and hx ∈ JX,x \ IX,x

∀x ∈ T (X) \N(X).

If Y ⊂ X \ N(X), then U0 := Rn \ N(X) is an open neighborhood of Y and

h ∈ O(U0) satisfies Z(h) = X ∩ U0 and hy ∈ JX,x \ IX,x ∀x ∈ Y ∩ T (X).

(2) If Y = {yk}k≥1 is a discrete set, ∀yk ∈ Y ∩ T (X) ∃hk,yk ∈ JX,yk \ IX,yk such

that Z(hk,yk) = Xyk. ∀yk ∈ Y \ T (X) let hk,yk ∈ IX,yk be such that Z(hk,yk) = Xyk.

Let {Vk}k≥1 be pairwise disjoint open neighborhoods in Rn of the point yk and hk an

analytic representative of hk,yk in Vk ∀k ≥ 1. Define U0 :=
⊔

k≥1 Vk and

h : U0 → R, x 7→ hk(x) if x ∈ Vk.

h ∈ O(U0) satisfies Z(h) = X ∩ U0 and hy ∈ JX,x \ IX,x ∀x ∈ Y ∩ T (X).

No restriction with respect to the set N(X).



2.8. Proof of the Main Theorem

Step 1. Initial preparation. Consider the exact sequence of sheaves

0 → JX → ORn → ORn/JX → 0

and the exact long corresponding sequence of global sections

0 → H0(Rn,JX) → H0(Rn,ORn) → H0(Rn,ORn/JX) → H1(Rn,JX) → H1(Rn,ORn)

→ · · · → Hp(Rn,ORn) → Hp(Rn,ORn/JX) → Hp+1(Rn,JX) → Hp+1(Rn,ORn).

Cartan’s theorem B =⇒ Hp(Rn,ORn) = 0 ∀p ≥ 1 =⇒

0 → H0(Rn,JX) → H0(Rn,ORn) → H0(Rn,ORn/JX)
δ→ H1(Rn,JX) → 0.

H0(Rn,ORn) → H0(Rn,ORn/JX) is surjective ⇐⇒ H1(Rn,JX) = 0.

If X is coherent
(Cartan’s B)

=⇒ H1(Rn,JX) = 0.

Purpose: X is non-coherent =⇒ H1(Rn,JX) ̸= 0.



2.8.1. Relations for 1-cocycle and 1-coboundary

Let U := {U0, U1} be an open covering of Rn. Let F be a sheaf on Rn.

Pick i, j, k ∈ {0, 1} and fij ∈ F(Ui ∩ Uj), fik ∈ F(Ui ∩ Uk), fjk ∈ F(Uj ∩ Uk).

1-cocycle relations: f00 = 0 on U0, f11 = 0 on U1 and f10 = −f01 on U0 ∩ U1.

1-coboundary relations for f0 ∈ F(U0) and f1 ∈ F(U1):

U0 ∩ U1 ⇝ f01 = f1 − f0,

U1 ∩ U0 ⇝ f10 = f0 − f1.

A 1-cocycle

(f00, f01, f10, f11) = (0, f01,−f01, 0) ∈ F(U0 ∩ U0)× F(U0 ∩ U1)× F(U1 ∩ U0)× F(U1 ∩ U1)

is a 1-coboundary ⇐⇒ ∃fi ∈ F(Ui) for i ∈ {0, 1} such that f01 = f1 − f0.



Step 2. Construction of an open covering U := {U0, U1} of X and a 1-cocycle

f01 ∈ H0(U0 ∩ U1,JX) that is not a 1-coboundary.

By hypothesis we have a C-analytic set Y ⊂ X , Y ⊂ U0

open
⊂ Rn and h ∈ O(U0) such

that Z(h) = X ∩ U0 and hy ∈ JX,y \ IX,y ∀y ∈ Y ∩ T (X).

Let Ỹ ⊂ Ω
open
⊂ Cn be a complexification of Y and let P1, . . . , Pm ∈ O(Ω) be invariant

such that Ỹ = Z(P1, . . . , Pm).

U := {U0, U1 := Rn \ Y } open covering of Rn. Define

Pλ(z) := λ1P
2
1+· · ·+λmP

2
m and f01,λ(z) :=

h(z)

Pλ(z)
∈ H0(U0 ∩ U1 = U0 \ Y,JX)

where λ ∈ Qm := {λ1 > 0, . . . , λm > 0}.

Let f0 ∈ H0(U0,JX) and f1 ∈ H0(U1,JX) be such that f01,λ = f1 − f0 on U0 ∩ U1.

gλ := f1Pλ = h + f0Pλ ∈ O(Rn) and gk,λ|X = 0

If Gλ is an analytic extension to Ω′ ⊂ Ω =⇒ Gλ|X̃∩Ω′ = 0.



Let V0 ⊂ Cn be an open neighborhood of U0 such that h, f0 extend to invariant

holomorphic functions H,F0 on V0:

Gλ|V0 = H + F0Pλ|V0.

We choose λ0 ∈ Qm such that dimC((X̃y ∩ Z(Pλ0,y) \ Z(Hy)) ≥ 1 ∀y ∈ Y ∩ T (X).

∀y ∈ Y ∩ T (X) ∃βy : (−1, 1) → X̃ analytic curve such that βy(0) = y and

βy((0, 1)) ⊂ (X̃ ∩ Z(Pλ0)) \ Z(H). Then

Gλ0 ◦ βy = 0, Pλ0 ◦ βy = 0, H ◦ βy ̸= 0

⇝ 0 = Gλ0 ◦ βy = H ◦ βy + (F0 ◦ βy)(Pλ0 ◦ βy) = H ◦ βy !!!!!

Conclusion: f01,λ0 ∈ H0(U0 ∩ U1,JX) is 1-cocycle that it is not a 1-coboundary.

The obstruction concentrates at all the points of Y ∩ T (X).



Step 3. Construction of ζ ∈ Cω(X) \ O(X). (We use the 1-cocycle)

0 //H0(U0,JX)×H0(U1,JX) //

��

ORn(U0)×ORn(U1) //

��

H0(U0,ORn/JX)×H0(U1,ORn/JX) //

��

0

0 //H0(U0 ∩ U1,JX) //ORn(U0 ∩ U1) //H0(U0 ∩ U1,ORn/JX) // 0

(f0, f1)
� //

_

��

(f0, f1)_

��

f1 − f0
� // f1 − f0

(q0, q1)
� //

_

��

([q0], [q1])_

��

q1 − q0
� // [q1 − q0]

We seek (q0, q1) ∈ ORn(U0)×ORn(U1) such that

h

Pλ0

= f01,λ0 = q1 − q0 = δ((q0, q1))

⇝ hλ0 := q1Pλ0 = h + q0Pλ0 ∈ O(Rn) & q0 :=
hλ0 − h

Pλ0

∈ O(U0).



Consider the exact sequence of coherent ORn-sheaves

0 → Pλ0ORn → ORn → ORn/Pλ0ORn → 0.

Cartan’s Theorem B =⇒

0 → H0(Rn, Pλ0ORn) → H0(Rn,ORn) → H0(Rn,ORn/Pλ0ORn) → 0 (exact)

As h ∈ H0(Rn,ORn/Pλ0ORn), ∃hλ0 ∈ O(Rn) such that hλ0 − h is a multiple of Pλ0.q0 :=
hλ0−h

Pλ0
∈ O(U0),

q1 :=
hλ0
Pλ0

∈ O(U1) (because Z(Pλ0) = Y )
& δ((q0, q1)) = q1−q0 =

h

Pλ0

= f01

Sought function.

qλ0 : X → R, z 7→

q0(z) if z ∈ X ∩ U0 = X \N(X),

q1(z) if z ∈ X ∩ U1 = X \ Y
& ξλ0 =

hλ0

Pλ0

∈ M(X)

Step 4. Y ∩ T (X) ⊂ O(ξλ0) ⊂ Y ∩ Cl(T (X)).



3. Semialgebraic case

Let S ⊂ Rn be a semialgebraic set and denote x := (x1, . . . , xn).

3.1. Differentiable semialgebraic functions

Definitions. A semialgebraic jet on S of order p ≥ 0 is a collection of semialgebraic

functions F := (fα)|α|≤p on S (α := (α1, . . . , αn) ∈ Nn and |α| := α1 + · · · + αn).

For each a ∈ S write

T p
aF :=

∑
|α|≤p

fα(a)

α!
(x− a)α and Rp

aF := f0 − T p
aF.

J p(S) is the set of all semialgebraic jets on S of order p. Consider the linear map

Dβ : J p(S) → J p−|β|(S), F := ((fα)|α|≤p) 7→ Fβ := (fγ+β)|γ|≤p−|β|,

∀β ∈ Nn with |β| ≤ p.



(Def.1) A continuous semialgebraic function f : S → R is a Cp semialgebraic function if

there exists a semialgebraic jet F := (fα)|α|≤p on S of order p such that f0 = f

and for each β with |β| ≤ p and every point a ∈ S it holds |Rp−|β|
x Fβ(y)| =

o(∥x− y∥p−|β|) for x, y ∈ S when x, y → a.

Other alternatives to define Sp-functions on a general semialgebraic set S ⊂ Rn:

(Def.2) ∃S ⊂ U
open s.a.
⊂ Rn and a Sp-function F : U → R such that F |S = f .

Sought
Def.

(Def.3) ∀x ∈ S ∃x ∈ Ux
open s.a.
⊂ Rn and Sp-function Fx : Ux → R such that Fx|Ux∩S =

f |Ux∩S.

(Def.4) ∀x ∈ S ∃x ∈ Ux
open s.a.
⊂ Rn and Cp function Fx : Ux → R (non-necessarily

semialgebraic) such that Fx|Ux∩S = f |Ux∩S.

(Def.5) ∃S ⊂ U
open s.a.
⊂ Rn and a Cp function F : U → R such that F |S = f .

(Def.2) =⇒ (Def.3) =⇒ (Def.4) ⇐⇒ (Def.5) and (Def.2) =⇒ (Def.1).



3.1.1. Some relations

(1) (Def.4) =⇒ (Def.5), using a Cp-partition of unity.

(2) If S ⊂ Rn is compact, (Def.3) =⇒ (Def.2) using an Sp-partition of unity.

(3) If S ⊂ Rn is closed, (Def.1) =⇒ (Def.2) (Kurdyka-Paw lucki, Thamrongthanyalak).

(4) If n = 2 and S ⊂ Rn is closed, (Def.5) =⇒ (Def.2) (Fefferman-Luli).

(5) If p = 1, n ≥ 1 and S ⊂ Rn is closed, (Def.5) =⇒ (Def.2) (Aschenbrenner-

Thamrongthanyalak).

(6) Weak version of ‘(Def.5) =⇒ (Def.2)’ (S ⊂ Rn closed) via t : N → N, which

encodes a certain loss of differentiability: If there exist S ⊂ U
open s.a.
⊂ Rn and a Ct(p)

function on U such that G|S = f , there exists an Sp-function F on U such that

F |S = f (Bierstone-Campesato-Milman).

(7) (Def.1) implies the existence of a Sp−1(U) function F on an open semialgebraic

neighborhood U ⊂ Rn of S.



3.2. Smooth semialgebraic functions and Nash functions

Classical result: smooth + semialgebraic function on a Nash manifold S ⊂ Rn ⇐⇒
analytic + algebraic function on S.

Question: What happens in the general semialgebraic setting?

The ring of smooth semialgebraic functions on S is

S(∞)(S) :=
⋂
p≥0

Sp(S)

where Sp(S) is the ring of Sp functions on S.

Lemma. If f ∈ S(∞)(S), ∀x ∈ S ∃Fx ∈ NRn,x such that Fx|Sx
= fx.

Definition. N(S) := H0(S, (NRn)|S) = ĺım
−→

N(V )|S where V ⊂ Rn covers the open

semialgebraic neighborhoods of S. We have N(S) ⊂ S(∞)(S).

Problem. For which semialgebraic sets S ⊂ Rn do we have N(S) = S(∞)(S)?



3.3. Nash sets

Let X ⊂ Rn be a Nash set.

(1) S(∞)(X) = CN(X) and N(X) = H0(X,NRn/I•
X).

(2) S(∞)(X) = CN(X) = N(X) ⇐⇒ X is coherent (J •
X,x = I•

X,x ∀x ∈ X).

3.4. Semialgebraic sets

Let S ⊂ Rn be a semialgebraic set and define

J •
S,x := {fx ∈ NRn,x : Sx ⊂ Z(fx)} and CN(S) := H0(S,NRn/J •

S ).

3.4.1. Ring of smooth semialgebraic functions

Theorem. Let f : S → R be a function:

f ∈ S(∞)(S) ⇐⇒ f ∈ CN(S) ⇐⇒ f is semialgebraic

and ∀x ∈ S ∃Fx ∈ NRn,x such that Fx|Sx
= fx.



3.4.2. Ring of Nash functions

There exist S ⊂ U
open s.a.
⊂ Rn and a Nash set X ⊂ Rn such that: if S ⊂ V

open s.a.
⊂ U

and Y ⊂ V is the Nash closure of S in V , there exists S ⊂ W
open s.a.
⊂ V of S such

that Y ∩W = X ∩W .

N(S) = H0(S, (NRn/I•
X)|S) = ĺım

−→
N(V )/I•(X)N(V ) where V ⊂ Rn covers the

open semialgebraic neighborhoods of S.

3.4.3. Smooth semialgebraic functions versus Nash functions

We have I•
X,x ⊂ J •

S,x for each x ∈ S. Define A(S) := {x ∈ S : I•
X,x ̸= J •

S,x}.

N(S) = S(∞)(S) ⇐⇒ A(S) = ∅

If A(S) = ∅, then I•
X,x = J •

S,x ∀x ∈ S and

S(∞)(S) = CN(S) = H0(S,NRn/J •
S ) = H0(S, (NRn/I•

X)|S) = N(S).

Example. S := {x2 − zy2 = 0, z ≥ 0} (Whitney’s umbrella with the handle erased)

has A(S) = ∅.


