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A set X ⊂ R
n inherits two metrics:

the outer metric dist(x, y) = |y − x| and the inner metric

idist(x, y) = length of the shortest path in X connecting x and y.

X is normally embedded if these two metrics on X are equivalent.

A surface germ X is a closed two-dimensional germ at 0 ∈ R
n,

definable in a polynomially bounded o-minimal structure with the

field of exponents F. Surface germs X and Y are outer (inner)

Lipschitz equivalent if there is an outer (inner) bi-Lipschitz home-

omorphism X → Y .

Finiteness theorems (Mostowski 85, Parusinski 94, Valette 05):

There are finitely many outer Lipschitz equivalence classes in any

definable family.

Inner Lipschitz classification of surface germs: Birbrair 99.

Our goal: outer Lipschitz classification of surface germs, i.e.,

canonical (unique up to outer Lipschitz equivalence) decomposition

of a surface germ into normally embedded Hölder triangles.
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Building blocks: For β ∈ F≥1, the standard β-Hölder triangle

is the surface germ Tβ = {(x, y) ∈ R
2 | x ≥ 0, 0 ≤ y ≤ xβ}.

The standard β-horn is Cβ = {(x, y, z) ∈ R
3 | z ≥ 0, x2 + y2 = z2β}.
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A β-Hölder triangle is a germ inner Lipschitz equivalent to Tβ.

A β-horn is a germ inner Lipschitz equivalent to Cβ.
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Valette link

An arc γ in X is a map germ γ : [0, ǫ) → X such that |γ(t)| = t.

The Valette link V (X) is the space of all arcs in X.

The tangency order tord(γ, γ′) of arcs γ and γ′ is the exponent

κ ∈ F≥1 ∪ {∞}, where |γ(t)− γ′(t)| = ctκ+(higher terms), c 6= 0.

The tangency order defines a non-archimedean metric on V (X).

A topologically non-singular arc γ ∈ V (X) is Lipschitz non-singular

if γ is an interior arc of a normally embedded Hölder triangle T ⊂ X.

There are finitely many Lipschitz singular arcs in V (X).

A Hölder triangle T is non-singular if all interior arcs of T are

Lipschitz non-singular.
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Zones in V (X)

A zone is a set Z ⊂ V (X) such that for any arcs γ 6= γ′ in Z there

is a non-singular Hölder triangle T = T(γ, γ′), bounded by γ and γ′,

such that V (T) ⊂ Z.

The order µ(Z) of a zone Z is the infimum of tangency orders of

arcs in Z. A singular zone Z = {γ} has order ∞.

A zone Z is closed if there are arcs γ and γ′ in Z such that

itord(γ, γ′) = µ(Z), otherwise Z is open.

An arc γ in a β-Hölder triangle T = T(γ1, γ2), bounded by the arcs

γ1 and γ2, is generic if itord(γ, γ1) = itord(γ, γ2) = β.

A zone Z is perfect if, for any γ 6= γ′ in Z, there is a Hölder triangle

T such that V (T) ⊂ Z and both γ and γ′ are generic arcs of T .
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Pizza. Let a surface germ X be the union of a β-Hölder triangle

T in the xy-plane and a graph z = f(x, y) of a Lipschitz function f

defined on T , such that f(0,0) = 0.

The order ordγf of f on γ ⊂ T is tord(γ, γ′), where γ′ = (γ, f(γ)).

The set Q(T) of exponents q = ordγf , for all γ ⊂ T , is either

a closed interval in F≥1 ∪ {∞} or a point (a single exponent).

A β-Hölder triangle T is elementary with respect to f if each set

Zq = {γ ⊂ T, ordγf = q}, for q ∈ Q(T), is a zone. If T is elementary,

then µ(q) = µ(Zq) defines the width function µ : Q(T) → F≥1∪{∞},

such that β ≤ µ(q) ≤ q.

T is a pizza slice for f if either Q(T) is a point or the width function

µ(q) = aq+ b is a non-constant affine function on Q(T).

If Q is not a point, then the boundary arc γ̃ of T where µ(q) is

maximal is called the supporting arc of T .
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A pizza on T associated with f is a decomposition of T into Hölder

triangles Tj, each of them a pizza slice for f , with several toppings:

• exponent βj of Tj,

• closed interval Qj = Q(Tj) in F≥1 ∪ {∞},

• affine width function µj(q) = ajq+ bj on Qj, where βj ≤ µj(q) ≤ q,

or a single exponent µj = βj when Qj is a point,

• the supporting arc γ̃j of Tj when Qj is not a point,

• the sign sj of f on Tj (sign is not needed when f is non-negative).

A pizza is minimal if the union of any two adjacent pizza slices is

not a pizza slice.

Theorem (Birbrair et al. 17). The minimal pizza exists and is

unique, up to bi-Lipschitz equivalence, for the Lipschitz contact

equivalence class of f .
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For a non-negative Lipschitz function f on a normally embedded

Hölder triangle T , the Lipschitz contact equivalence class of f

is the same as the outer Lipschitz equivalence class of a surface

germ X = T
⋃
{graph of f}.

All toppings of a minimal pizza are canonical, while the pizza slices

Tj are not. However, the boundary arcs of Hölder triangles Tj can

be placed in canonical perfect zones Zi ⊂ V (T). Here is the plan:

1. Identify a canonical finite family of perfect boundary zones

Zi ⊂ V (T) where boundary arcs of Tj can be placed.

2. Choosing arbitrary arcs in the zones Zi, define a decomposition

of T into Hölder triangles Tj. All choices define minimal pizzas for

f , resulting in outer Lipschitz equivalent decompositions of X.

3. Replacing this geometric construction with an abstract pizza,

a combinatorial object, we get an outer Lipschitz invariant of X.
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Example: f(x, y) = y2 − x3. We have f |γ± ≡ 0, where

γ± = {x ≥ 0, y = ±x3/2} are singular boundary zones.

There are six boundary zones of finite order µ:

g

g

+

-

Z0

Z

Z

Z

Z

Z'

'

'

0

++

--

q = 3, = 3/2mq = 3, = 3/2m

q = 3, = 3/2m

q = 3, = 3/2m

q = 2, = 1m

q = 2, = 1m

q = , =N Nm

q = , =N Nm

9



A minimal pizza for f consists of eight slices Tj with the boundary

arcs γ+, γ− and an arbitrary arc selected in each of the six other

boundary zones.
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General surface germ X: normal and abnormal zones.

A Lipschitz non-singular arc γ ⊂ X is abnormal if there are normally

embedded Hölder triangles T and T ′ in X such that γ = T ∩ T ′ and

T ∪ T ′ is not normally embedded. Otherwise, γ is normal.

A zone Z ⊂ V (X) is abnormal (resp., normal) if all arcs in Z

are abnormal (resp., normal). An abnormal (resp., normal) zone is

maximal if it is not contained in a larger abnormal (resp., normal)

zone.

Theorem (AG, Souza 21) For any surface germ X, there is a

canonical partition of V (X) into maximal abnormal zones and

maximal normal zones.

All maximal normal zones are normally embedded.

All maximal abnormal zones are perfect. Each of them is either a

normally embedded non-snake zone, or a snake zone: a disjoint

union of normally embedded segment zones and nodal zones.
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Snakes, circular snakes, bubble snakes and non-snake bubbles.

A β-snake is a non-singular β-Hölder triangle T such that each

generic arc in V (T) is abnormal.

A maximal abnormal β-zone Z ⊂ V (X) is a snake zone if there is

a β-snake T ⊂ X such that Z is the set of generic arcs of T .

b
b

b

The link of a β-snake. Shaded disks indicate nodal zones.
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A circular β-snake is a β-horn C such that all arcs in V (C) are

abnormal. The set V (C) is called a circular β-snake zone.

bb

b

The link of a circular β-snake. Shaded disks indicate nodal zones.
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A bubble is a Hölder triangle T bounded by γ1 and γ2, such that

tord(γ1, γ2) > itord(γ1, γ2), partitioned into normally embedded

triangles by an arc γ. A bubble snake is a bubble that is a snake.

A non-snake bubble is a bubble that does not contain a snake.

A non-snake abnormal zone is a maximal abnormal zone Z ⊂ V (T)

where T is a non-snake bubble.
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Transverse and coherent pairs of Hölder triangles
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A pair (T, T ′) of normally embedded Hölder triangles is transverse

if T ∪ T ′ is a subset of a normally embedded Hölder triangle.

A pair (T, T ′) of normally embedded Hölder triangles is coherent if

it is outer Lipschitz equivalent to the union of T and a graph T ′ of

a Lipschitz function f defined on T , such that T is a pizza slice for

f with µ(q) = aq+ b 6≡ q.
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Outer Lipschitz invariant decomposition

of the Valette link of a surface germ X.

Step 1. Define canonical fundamental zones in V (X):

• Lipschitz singular arcs,

• Maximal normal zones,

• Segment and nodal zones of snakes and circular snakes,

• Non-snake abnormal zones.

Step 2. Using pizza decompositions for the “distance functions”

between fundamental zones, define global pizza zones in V (X) as

minimal by inclusion zones among pizza zones of these pizza decom-

positions, their non-empty intersections, and their intersections with

abnormal fundamental zones. All global pizza zones are perfect.
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Step 3. Placing boundary arcs in global pizza zones, decompose

X into finitely many isolated arcs and normally embedded Hölder

triangles, so that any two Hölder triangles are either coherent or

transverse, and all choices of arcs result in outer Lipschitz equivalent

decompositions.

It may be necessary to place two or three boundary arcs in some of

the global pizza zones.

Step 4. Define combinatorial equivalence of these decomposi-

tions, so that two surface germs are outer Lipschitz equivalent iff

the corresponding decompositions are combinatorially equivalent.

This program has been completed for the union of two normally

embedded Hölder triangles (Birbrair, AG 25).

17



T

T `

Example: Pizza zones for the union of two normally embedded

Hölder triangles.
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Example: Decomposition of a three-horn surface germ
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Normal pairs of normally embedded Hölder Triangles

Given two Hölder triangles T and T ′, a pair of arcs γ ⊂ T and γ′ ⊂ T ′,

is normal if tord(γ, T ′) = tord(γ, γ′) = tord(γ′, T).

A pair (T, T ′) of normally embedded Hölder triangles T = T(γ1, γ2)

and T ′ = T(γ′1, γ
′
2) is normal if both pairs (γ1, γ

′
1) and (γ2, γ

′
2) of

their boundary arcs are normal.

Example. If Γ is a graph of a Lipschitz function f on T , then any

pair of arcs (γ, γ′), where γ ⊂ T and γ′ ⊂ Γ is the graph of f |γ, is

normal, and the pair (T,Γ) of Hölder triangles is normal.

Theorem (Birbrair, AG 22). Let (T, T ′) be a normal pair of normally

embedded Hölder triangles, such that T is elementary with respect

to f(x) = dist(x, T ′). Then (T, T ′) is outer Lipschitz equivalent to a

pair (T,Γ), where Γ is the graph of f . Moreover, T ′ is elementary

with respect to g(x′) = dist(x′, T), and a minimal pizza for g on T ′

is equivalent to a minimal pizza for f on T .
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Maximum zones

Let (T, T ′) be a normal pair of normally embedded Hölder triangles

T = T(γ1, γ2) and T ′ = T(γ′1, γ
′
2). Let {Dℓ}

p
ℓ=0 be the pizza zones in

V (T) of a minimal pizza on T associated with f(x) = dist(x, T ′), or-

dered from D0 = {γ1} to Dp = {γ2}. The exponent qℓ = tord(Dℓ, T
′)

of the zone Dℓ is defined as ordγf for γ ∈ Dℓ (it is the same for all

γ ∈ Dℓ).

A zone Dℓ is a maximum zone if either 0 < ℓ < p and qℓ ≥

max(qℓ−1, qℓ+1), or ℓ = 0 and q0 ≥ q1, or ℓ = p and qp ≥ qp−1.

Maximum zones in V (T ′) are some of the pizza zones D′
ℓ of a minimal

pizza on T ′ associated with g(x′) = dist(x′, T). They are defined

similarly, exchanging T and T ′.
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Theorem (Birbrair, AG 22). Let (T, T ′) be a normal pair of normally

embedded Hölder triangles T = T(γ1, γ2) and T ′ = T(γ′1, γ
′
2) oriented

from γ1 to γ2 and from γ′1 to γ′2, respectively.

Let {Mi}
m
i=1 and {M ′

j}
n
j=1 be the maximum zones in V (T) and V (T ′),

ordered according to the orientations of T and T ′.

Let q̆i = tord(Mi, T
′) and q̆′j = tord(M ′

j, T).

Then m = n, and there is a canonical permutation

σ : [1, . . . ,m] → [1, . . . ,m]

such that ord(Mi) = ord(M ′
σ(i)

) and tord(Mi,M
′
σ(i)

) = q̆i = q̆′
σ(i)

.

If {γ1} = M1 is a maximum zone, then {γ′1} = M ′
1 and σ(1) = 1. If

{γ2}=Mm is a maximum zone, then {γ′2}=M ′
m and σ(m) = m.
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Transverse and coherent pairs of Hölder triangles

A pair (T, T ′) of normally embedded Hölder triangles is transverse

if T ∪ T ′ is a subset of a normally embedded Hölder triangle.

A non-transverse pair (T, T ′) of normally embedded Hölder triangles

is coherent if it is outer Lipschitz equivalent to the union of T and

a graph T ′ of a Lipschitz function f defined on T , such that T is a

pizza slice for f .

A pizza slice Tj of a pizza decomposition of a Hölder triangle T

associated with a function f is transverse if Tj and the graph of

f |Tj are transverse Hölder triangles.

Alternatively, a pizza slice Tj is transverse if µj(q) ≡ q, where µj is

the affine width function on Qj associated with f .

A pizza slice Tj is coherent if it is not transverse, thus µj(q) 6≡ q.
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Theorem (Birbrair, AG 22). Let (T, T ′) be a normal pair of nor-

mally embedded Hölder triangles T = T(γ1, γ2) and T ′ = T(γ′1, γ
′
2),

oriented from γ1 to γ2 and from γ′1 to γ′2, respectively. Let {Ti}
p
i=1

and {T ′
j}
s
j=1 be minimal pizza decompositions of T and T ′ associated

with the distance functions f(x) = dist(x, T ′) and g(x′) = dist(x′, T).

Then there is a canonical one-to-one correspondence j = τ(i) be-

tween coherent pizza slices Ti of T and coherent pizza slices T ′
j of

T ′, such that each pair (Ti, T
′
j), where j = τ(i), is outer Lipschitz

equivalent to the pairs (Ti,Γ) and (T ′
j,Γ

′), where Γ is the graph of

f |Ti and Γ′ is the graph of g|T ′
j
.

The pair (Ti, T
′
j), where j = τ(i), is positive if orientations of Ti and

T ′
j induced by the correspondence τ are consistent with orientations

of T and T ′. Otherwise, the pair (Ti, T
′
j) is negative.

Thus τ is a signed correspondence.
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Example: A normal pair of normally embedded Hölder triangles

with two positive pairs (T1, T
′
1) and (T4, T

′
4) of coherent pizza slices,

and two negative pairs (T2, T
′
3) and (T3, T

′
2).
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Example: A normal pair of Hölder triangles with different number

of pizza slices in the minimal pizzas on T and T ′ associated with

the distance functions f = dist(x, T ′) and g = dist(x′, T).
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Example: A normal pair of Hölder triangles with different number

of pizza slices in the minimal pizzas on T and T ′ associated with

the distance functions f = dist(x, T ′) and g = dist(x′, T).
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Theorem (Birbrair, AG 25). Two normal pairs (T, T ′) and (S, S′) of

normally embedded Hölder triangles are outer Lipschitz equivalent

if, and only if, the following holds:

1. The minimal pizzas on T and T ′ associated with the distance

functions f(x) = dist(x, T ′) and g(x′) = dist(x′, T) are equivalent

to the minimal pizzas on S and S′ associated with the distance

functions φ(s) = dist(s, S′) and ψ(s′) = dist(s′, S), respectively.

2. The numbers of maximum zones for the pairs (T, T ′) and (S, S′)

are equal, and the permutation σ of the maximum zones for the

pair (S, S′) is the same as for the pair (T, T ′).

3. The numbers of coherent pizza slices for the pairs (T, T ′) and

(S, S′) are equal, and the signed correspondence τ between coherent

pizza slices for the pair (S, S′) is the same as for the pair (T, T ′).
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