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Plan of the talk:
e Borel lemma, 0 — (x)™° — C*°(R") — Cg@’) — 0.
@ Functions with “prescribed derivatives of finite and transfinite order" at one point.
@ Ideals /| € C°°(U) and "ghost ideals".
o Functions with “prescribed derivatives of finite and transfinite order" over a closed subset Z C U.

Joint work with Genrich Belitskii (BGU).
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“Transfinite lemma of Borel". Take a filtration C>*°(R") D ; D/, D ---, such that V() = 0 € R".

o —

1. Then C*>°(R") — C>(R").
2. Moreover, if I, 1= N, is "ghost-free", then CY(R"\ 0) N C>®(R") - C>(R").

Why “transfinite"? e For /; = (x)/ every element of Cg(@’) = R[x] specifies derivatives {f()|,} of all
finite orders. Borel: every prescribed set of all (finite) derivatives is C°°-realizable.

e Suppose [; C (x)*°. Then an element of C>°(IR") specifies “derivatives of prescribed transfinite orders".
Each such collection of “transfinite derivatives" is C°°-realizable.
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C*R") = CY(R"\ Z)N C=®(R") + I.

In words: every f is presentable as f,, + f;, where f,, € C¥*(R"\ Z) N C*(R") and f; € I.

The proof of “Transfinite Borel lemma" is not “immediate Borel". [Need "derivatives of transfinite orders".]
e
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relevant ideals are [(Zp)Po - I(Z1)Pr - I(Z2)P2 - - or I(Zp)Pe N I(Z)Pr N I(Z)P2 - -

These filtrations are not equivalent to /(Z)°.

2. Suppose at first iteration you resolve the problem over Z; C U, then over Z; C Z, C U, and so on.

Then the relevant filtration, h D [, D - -+, satisfies: V(h) =2y, V(k) =25, ...
These filtrations are not equivalent to /(Z)®. (Even the zero locus varies.)

Goal: Establish the surjectivity C*°(...) — Cg(\) for arbitrary filtrations.
e
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Szczesliwych urodzin!




