Surjectivity of completion for C^{∞} -rings. (The algebraic version of Whitney extension theorem) Dmitry Kerner Krakow, 26.06.2025 W. Pawłucki's birthday

Plan of the talk:

- Borel lemma, $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)} \to 0$.
- Functions with "prescribed derivatives of finite and transfinite order" at one point.
- Ideals $I \subset C^{\infty}(\mathcal{U})$ and "ghost ideals".
- Functions with "prescribed derivatives of finite and transfinite order" over a closed subset $Z \subset \mathcal{U}$.

Joint work with Genrich Belitskii (BGU).

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}\llbracket x
rbracket, \ f \to Taylor_o(f).$

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!], \ f \to Taylor_o(f)$. What is the image of this map?

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!], \ f \to Taylor_o(f)$. What is the image of this map? **Borel:** $C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \mathbb{R}[\![x]\!].$

A reformulation: $f \in C^{\infty}(\mathbb{R}^n)$

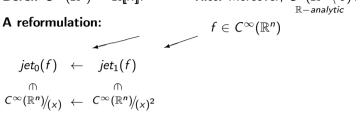
 \mathbb{R} -analytic

A reformulation:

$$f\in C^{\infty}(\mathbb{R}^n)$$

$$jet_0(f)$$

 \mathbb{R} -analytic



 \mathbb{R} -analytic

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^n)$$
 $jet_0(f) \leftarrow jet_1(f) \leftarrow \cdots \leftarrow$

 \mathbb{R} -analytic

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^{n})$$

$$jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f)$$

$$C^{\infty}(\mathbb{R}^{n})/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{2} \leftarrow \cdots C^{\infty}(\mathbb{R}^{n})/(x)^{d+1}$$

A reformulation: $f \in C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$. Ritt: Moreover, $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^{n})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 $jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow$
 $C^{\infty}(\mathbb{R}^{n})/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{2} \leftarrow \cdots \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{d+1}$

A reformulation: $f \in C^{\infty}(\mathbb{R}^n)$

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^{n})$$

$$jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in C^{\infty}(\mathbb{R}^{n})/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{2} \leftarrow \cdots \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{d+1}$$

R—analytic

Borel: $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$. Ritt: Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$.

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^{n})$$

$$\downarrow \qquad \qquad \downarrow$$

$$jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/\!(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})}$$

$$C^{\infty}(\mathbb{R}^{n})/\!(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/\!(x)^{2} \leftarrow \cdots \leftarrow C^{\infty}(\mathbb{R}^{n})/\!(x)^{d+1}$$

Borel: $C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \mathbb{R}[\![x]\!]$. Ritt: Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \mathbb{R}[\![x]\!]$.

Borel: $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. Ritt: Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$.

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^{n})$$

$$jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[x]$$

$$\bigcap_{proj.limit} C^{\infty}(\mathbb{R}^{n})/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{2} \leftarrow \cdots \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{d+1}$$

 \mathbb{R} -analytic

$$f \in C^{\infty}(\mathbb{R}^{n})$$

$$\downarrow \qquad \qquad \downarrow$$

$$jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[x]$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\downarrow$$

Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^n) \stackrel{Borel}{\to} \widehat{C^{\infty}(\mathbb{R}^n)} \to 0.$

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^n)$$

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_0(f)$. What is the image of this map?

Borel: $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$. Ritt: Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$.

$$jet_0(f) \leftarrow jet_1(f) \leftarrow \cdots \leftarrow jet_d(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^n)/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[\![x]\!]$$

$$\bigcap_{proj.limit} \bigcap_{proj.limit} \text{ the completion}$$

$$C^{\infty}(\mathbb{R}^n)/(x) \leftarrow C^{\infty}(\mathbb{R}^n)/(x)^2 \leftarrow \cdots C^{\infty}(\mathbb{R}^n)/(x)^{d+1}$$

$$C^{\infty}(\mathbb{R}^{n})/\!(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/\!(x)^{2} \leftarrow \cdots C^{\infty}(\mathbb{R}^{n})/\!(x)^{d+1}$$
Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Borel}} \widehat{C^{\infty}(\mathbb{R}^{n})} \to 0.$ Moreover, $C^{\omega}(\mathbb{R}^{n} \setminus o) \cap C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Ritt}} \widehat{C^{\infty}(\mathbb{R}^{n})}.$

Then:
$$0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^n) \overset{\textit{Borel}}{\to} \widehat{C^{\infty}(\mathbb{R}^n)} \to 0.$$
 Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \overset{\textit{Ritt}}{\to} \widehat{C^{\infty}(\mathbb{R}^n)}.$

 \mathbb{R} -analytic A reformulation: $f \in C^{\infty}(\mathbb{R}^n)$

Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^n) \stackrel{Borel}{\longrightarrow} \widehat{C^{\infty}(\mathbb{R}^n)} \to 0$.

$$jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow \atop proj.limit} C^{\infty}(\mathbb{R}^{n})/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[\![x]\!]$$

$$C^{\infty}(\mathbb{R}^{n})/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{2} \leftarrow \cdots C^{\infty}(\mathbb{R}^{n})/(x)^{d+1}$$

$$C^{\infty}(\mathbb{R}^{n})/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{2} \leftarrow \cdots C^{\infty}(\mathbb{R}^{n})/(x)^{d+1}$$

Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \stackrel{Ritt}{\to} \widehat{C^{\infty}(\mathbb{R}^n)}$.

Why is this useful?

2/8

 \mathbb{R} -analytic A reformulation: $f \in C^{\infty}(\mathbb{R}^n)$

$$jet_0(f) \leftarrow jet_1(f) \leftarrow \cdots \leftarrow jet_d(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow \atop proj.limit} C^{\infty}(\mathbb{R}^n)/\!\!/_{\!\!(x)} = \mathbb{R}[\![x]\!]$$

$$C^{\infty}(\mathbb{R}^n)/\!\!/_{\!\!(x)} \leftarrow C^{\infty}(\mathbb{R}^n)/\!\!/_{\!\!(x)}^2 \leftarrow \cdots C^{\infty}(\mathbb{R}^n)/\!\!/_{\!\!(x)}^{d+1}$$

$$C^{\infty}(\mathbb{R}^n)/\!/_{\!\!(x)} \leftarrow C^{\infty}(\mathbb{R}^n)/\!\!/_{\!\!(x)}^{Borel} \widehat{C^{\infty}(\mathbb{R}^n)} \rightarrow 0.$$

$$C^{\infty}(\mathbb{R}^n)/\!\!/_{\!\!(x)}^{n+1} \leftarrow \widehat{C^{\infty}(\mathbb{R}^n)}/\!\!/_{\!\!(x)}^{n+1}$$

$$C^{\infty}(\mathbb{R}^n)/\!\!/_{\!\!(x)}^{n+1} \leftarrow \widehat{C^{\infty}(\mathbb{R}^n)/\!\!/_{\!\!(x)}^{n+1}$$

$$C^{\infty}(\mathbb{R}^n)/\!\!/_{\!\!(x)}^{n+1} \leftarrow \widehat{C^{\infty}(\mathbb{R}^n)/\!\!/_{\!\!(x)}^{n+1}$$

$$C^{\infty}(\mathbb{R}^n)/\!\!/_{\!\!(x)}^{n+1} \leftarrow \widehat{C^{\infty}(\mathbb{R}^n)/\!\!/_{\!\!(x)}^{n+1}$$

$$C^{\infty}(\mathbb{R}^n)/\!\!/_{\!\!(x)}^{n+1} \leftarrow \widehat{C^{\infty}(\mathbb{R}^n)/\!\!/_{\!\!(x)}^{n+1} \leftarrow \widehat{C^{\infty}(\mathbb{R}^n)/\!\!/_{\!\!(x)}^{n+1}}$$

$$C^{\infty}(\mathbb{R}^n)/\!\!/_{\!\!(x)}^{n+1} \leftarrow \widehat{C^{\infty}(\mathbb{R}^n)/\!\!/_{\!\!(x)}^{n+1} \leftarrow \widehat{C^{\infty}(\mathbb{R}^$$

Why is this useful? (approximate solutions)

 \mathbb{R} – analytic A reformulation:

Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^n) \stackrel{Borel}{\longrightarrow} \widehat{C^{\infty}(\mathbb{R}^n)} \to 0$.

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^{n})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 $jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[x]$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow$$

Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2$,

 \mathbb{R} – analytic A reformulation:

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^{n})$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad$$

Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2$, $mod(x)^3$,

A reformulation: $f \in C^{\infty}(\mathbb{R}^n)$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ $jet_0(f) \leftarrow jet_1(f) \leftarrow \cdots \leftarrow jet_d(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^n)/\!\!/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[\![x]\!]$

$$C^{\infty}(\mathbb{R}^{n})/\!\!/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!/(x)^{2} \leftarrow \cdots \quad C^{\infty}(\mathbb{R}^{n})/\!\!/(x)^{d+1}$$
Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Borel}} \widehat{C^{\infty}(\mathbb{R}^{n})} \to 0.$
Moreover, $C^{\omega}(\mathbb{R}^{n} \setminus o) \cap C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{with}} \widehat{C^{\infty}(\mathbb{R}^{n})}.$

Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2, mod(x)^3, \ldots$

 \mathbb{R} -analytic A reformulation:

Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^n) \stackrel{Borel}{\longrightarrow} \widehat{C^{\infty}(\mathbb{R}^n)} \to 0.$

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^{n})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 $jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[x]$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow$$

Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2$, $mod(x)^3$, ... Borel: There exists a " C^{∞} -solution mod (flat functions)".

reformulation: $f \in C^{\infty}(\mathbb{R}^n)$ \downarrow $jet_0(f) \leftarrow jet_1(f) \leftarrow \cdots \leftarrow jet_d(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^n)/\!\!/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[\![x]\!]$ \mathbb{R} -analytic A reformulation:

 $\bigcap_{C^{\infty}(\mathbb{R}^n)/(x)}
\bigcap_{\leftarrow C^{\infty}(\mathbb{R}^n)/(x)^2}
\bigcap_{\leftarrow \cdots}
\bigcap_{C^{\infty}(\mathbb{R}^n)/(x)^{d+1}}$

Then:
$$0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^n) \overset{\textit{Borel}}{\twoheadrightarrow} \widehat{C^{\infty}(\mathbb{R}^n)} \to 0.$$
 Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \overset{\textit{Ritt}}{\twoheadrightarrow} \widehat{C^{\infty}(\mathbb{R}^n)}.$

Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2$, $mod(x)^3$, ...

Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Borel: $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. **Ritt:** Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$.

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^n) \stackrel{Borel}{\longrightarrow} \widehat{C^{\infty}(\mathbb{R}^n)} \to 0.$

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^{n})$$

$$jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[x]$$

$$C^{\infty}(\mathbb{R}^{n})/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{2} \leftarrow \cdots \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{d+1}$$

Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2$, $mod(x)^3$, ... Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Example.

A reformulation:

Borel: $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. **Ritt:** Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. A reformulation:

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^n) \stackrel{Borel}{\longrightarrow} \widehat{C^{\infty}(\mathbb{R}^n)} \to 0.$

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^{n})$$

$$jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[x]$$

$$C^{\infty}(\mathbb{R}^{n})/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{2} \leftarrow \cdots \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{d+1}$$

Why is this useful? (approximate solutions) Given a problem, let's solve it
$$mod(x)^2$$
, $mod(x)^3$, ... Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Example. Let $\tau_1(x) = e^{-\frac{1}{x^2}}$.

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^{n})$$

$$jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[x]$$

$$\bigcap_{C^{\infty}(\mathbb{R}^{n})/(x)} \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{2} \leftarrow \cdots \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{d+1}$$

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

Borel: $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. **Ritt:** Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$.

$$C^{\infty}(\mathbb{R}^{n})/\!(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/\!(x)^{2} \leftarrow \cdots C^{\infty}(\mathbb{R}^{n})/\!(x)^{d+1}$$
Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Borel}} \widehat{C^{\infty}(\mathbb{R}^{n})} \to 0.$ Moreover, $C^{\omega}(\mathbb{R}^{n} \setminus o) \cap C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Ritt}} \widehat{C^{\infty}(\mathbb{R}^{n})}.$

Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Example. Let
$$\tau_1(x) = e^{-\frac{1}{x^2}}$$
, $\tau_2 = e^{-\frac{1}{\tau_1}}$,

Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2$, $mod(x)^3$, ...

Borel:
$$C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$$
. Ritt: Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$.

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^n) \stackrel{Borel}{\longrightarrow} \widehat{C^{\infty}(\mathbb{R}^n)} \to 0.$

 $\bigcap_{C^{\infty}(\mathbb{R}^n)/(x)}
\bigcap_{\leftarrow C^{\infty}(\mathbb{R}^n)/(x)^2}
\bigcap_{\leftarrow \cdots}
\bigcap_{C^{\infty}(\mathbb{R}^n)/(x)^{d+1}}$

Why is this useful? (approximate solutions) Given a problem, let's solve it
$$mod(x)^2$$
, $mod(x)^3$, ... Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Example. Let
$$\tau_1(x) = e^{-\frac{1}{x^2}}$$
, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$,

Borel: $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. **Ritt:** Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. A reformulation:

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^n) \stackrel{Borel}{\longrightarrow} \widehat{C^{\infty}(\mathbb{R}^n)} \to 0.$

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^{n})$$

$$jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[x]$$

$$C^{\infty}(\mathbb{R}^{n})/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{2} \leftarrow \cdots \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{d+1}$$

Why is this useful? (approximate solutions) Given a problem, let's solve it
$$mod(x)^2$$
, $mod(x)^3$, ... Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Example. Let $\tau_1(x) = e^{-\frac{1}{x^2}}$, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$, ...

Borel: $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. Ritt: Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. \mathbb{R} -analytic A reformulation: reformulation: $f \in C^{\infty}(\mathbb{R}^{n})$ $\downarrow \qquad \qquad \downarrow$ $jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/\!(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[\![x]\!]$

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

Q.

$$C^{\infty}(\mathbb{R}^{n})/\!\!/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!/(x)^{2} \leftarrow \cdots \quad C^{\infty}(\mathbb{R}^{n})/\!\!/(x)^{d+1}$$
Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Borel}} \widehat{C^{\infty}(\mathbb{R}^{n})} \to 0.$ Moreover, $C^{\omega}(\mathbb{R}^{n} \setminus o) \cap C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Ritt}} \widehat{C^{\infty}(\mathbb{R}^{n})}.$

proi.limit the completion

Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2$, $mod(x)^3$, ...

Example. Let
$$\tau_1(x) = e^{-\frac{1}{x^2}}, \ \tau_2 = e^{-\frac{1}{\tau_1}}, \ \tau_3 = e^{-\frac{1}{\tau_2}}, \dots$$

Borel: $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. **Ritt:** Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. \mathbb{R} -analytic A reformulation:

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^{n})$$

$$jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow \\ proj.limit} C^{\infty}(\mathbb{R}^{n})/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[x]$$

$$C^{\infty}(\mathbb{R}^{n})/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{2} \leftarrow \cdots \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{d+1}$$
Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Borel}} \widehat{C^{\infty}(\mathbb{R}^{n})} \to 0$. Moreover, $C^{\omega}(\mathbb{R}^{n} \setminus o) \cap C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Ritt}} \widehat{C^{\infty}(\mathbb{R}^{n})}$.

Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2$, $mod(x)^3$, ... Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Borel: There exists a
$$C^{\infty}$$
-solution mod (flat functions)". Occasionally we need better approximations

Example. Let $\tau_1(x) = e^{-\frac{1}{x^2}}$, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$, ... **Q.** Suppose a problem is solvable $mod(\tau_1)$,

Borel: $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. Ritt: Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. \mathbb{R} -analytic A reformulation:

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^{n})$$

$$jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[x]$$

$$C^{\infty}(\mathbb{R}^{n})/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{2} \leftarrow \cdots \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{d+1}$$

Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2$, $mod(x)^3$, ... Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Example. Let $\tau_1(x) = e^{-\frac{1}{x^2}}$, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$, ...

Q. Suppose a problem is solvable $mod(\tau_1)$, $mod(\tau_2)$,

Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^n) \stackrel{Borel}{\to} \widehat{C^{\infty}(\mathbb{R}^n)} \to 0.$

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

Borel: $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. Ritt: Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. \mathbb{R} -analytic A reformulation:

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^{n})$$

$$jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[x]$$

$$C^{\infty}(\mathbb{R}^{n})/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{2} \leftarrow \cdots \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{d+1}$$

Why is this useful? (approximate solutions) Given a problem, let's solve it
$$mod(x)^2$$
, $mod(x)^3$, ...
Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Example. Let $\tau_1(x) = e^{-\frac{1}{x^2}}$, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$, ...

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

Q. Suppose a problem is solvable $mod(\tau_1)$, $mod(\tau_2)$,

Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^n) \stackrel{Borel}{\to} \widehat{C^{\infty}(\mathbb{R}^n)} \to 0.$

Borel: $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. **Ritt:** Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. A reformulation:

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^n) \stackrel{Borel}{\longrightarrow} \widehat{C^{\infty}(\mathbb{R}^n)} \to 0.$

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^{n})$$

$$jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[x]$$

$$C^{\infty}(\mathbb{R}^{n})/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{2} \leftarrow \cdots \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{d+1}$$

Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2$, $mod(x)^3$, ... Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Example. Let $\tau_1(x) = e^{-\frac{1}{x^2}}$, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$, ...

Q. Suppose a problem is solvable $mod(\tau_1)$, $mod(\tau_2)$, Does there exist a C^{∞} -solution $mod \cap_{\bullet} (\tau_{\bullet})$?

Borel:
$$C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$$
. Ritt: Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. \mathbb{R} —analytic

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^n) \stackrel{Borel}{\longrightarrow} \widehat{C^{\infty}(\mathbb{R}^n)} \to 0.$

 $\bigcap_{C^{\infty}(\mathbb{R}^n)/(x)}
\bigcap_{\leftarrow C^{\infty}(\mathbb{R}^n)/(x)^2}
\bigcap_{\leftarrow \cdots}
\bigcap_{C^{\infty}(\mathbb{R}^n)/(x)^{d+1}}$

Why is this useful? (approximate solutions) Given a problem, let's solve it
$$mod(x)^2$$
, $mod(x)^3$, ...

Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations

Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Example. Let
$$\tau_1(x) = e^{-\frac{1}{x^2}}$$
, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$, ...

Q. Suppose a problem is solvable $mod(\tau_1)$, $mod(\tau_2)$, Does there exist a C^{∞} -solution $mod \cap_{\bullet} (\tau_{\bullet})$?

Borel: $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. **Ritt:** Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. A reformulation:

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

$$C^{\infty}(\mathbb{R}^{n})/\!(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/\!(x)^{2} \leftarrow \cdots \quad C^{\infty}(\mathbb{R}^{n})/\!(x)^{d+1}$$
Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Borel}} \widehat{C^{\infty}(\mathbb{R}^{n})} \to 0.$ Moreover, $C^{\omega}(\mathbb{R}^{n} \setminus o) \cap C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Ritt}} \widehat{C^{\infty}(\mathbb{R}^{n})}.$

Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2$, $mod(x)^3$, ... Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Example. Let $\tau_1(x) = e^{-\frac{1}{x^2}}$, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$, ...

Q. Suppose a problem is solvable $mod(\tau_1)$, $mod(\tau_2)$, Does there exist a C^{∞} -solution $mod \cap_{\bullet} (\tau_{\bullet})$?

Borel: $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. Ritt: Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. \mathbb{R} -analytic A reformulation: reformulation: $f \in C^{\infty}(\mathbb{R}^{n})$ $\downarrow \qquad \qquad \downarrow$ $jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/\!(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[\![x]\!]$

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

$$C^{\infty}(\mathbb{R}^{n})/\!\!/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!/(x)^{2} \leftarrow \cdots \quad C^{\infty}(\mathbb{R}^{n})/\!\!/(x)^{d+1}$$
Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Borel}} \widehat{C^{\infty}(\mathbb{R}^{n})} \to 0.$ Moreover, $C^{\omega}(\mathbb{R}^{n} \setminus o) \cap C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Ritt}} \widehat{C^{\infty}(\mathbb{R}^{n})}.$

proj.limit the completion

Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2$, $mod(x)^3$, ... Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Forei: There exists a
$$C^{\infty}$$
-solution mod (flat functions)". Occasionally we need better approximation

Example. Let $\tau_1(x) = e^{-\frac{1}{x^2}}$, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$, ...

Q. Suppose a problem is solvable $mod(\tau_1)$, $mod(\tau_2)$, Does there exist a C^{∞} -solution $mod \cap_{\bullet} (\tau_{\bullet})$?

eformulation: $f \in C^{\infty}(\mathbb{R}^{n})$ $jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow \atop proj.limit} C^{\infty}(\mathbb{R}^{n})/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[x]$ A reformulation:

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

Borel: $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. Ritt: Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$.

$$C^{\infty}(\mathbb{R}^{n})/\!\!/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!/(x)^{2} \leftarrow \cdots \quad C^{\infty}(\mathbb{R}^{n})/\!\!/(x)^{d+1}$$
Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Borel}} \widehat{C^{\infty}(\mathbb{R}^{n})} \to 0.$
Moreover, $C^{\omega}(\mathbb{R}^{n} \setminus o) \cap C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{with}} \widehat{C^{\infty}(\mathbb{R}^{n})}.$

Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2$, $mod(x)^3$, ... Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Example. Let $\tau_1(x) = e^{-\frac{1}{x^2}}$, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$, ...

Q. Suppose a problem is solvable $mod(\tau_1)$, $mod(\tau_2)$, Does there exist a C^{∞} -solution $mod \cap_{\bullet} (\tau_{\bullet})$? $C^{\infty}(\mathbb{R}^n)/(\tau_1) \leftarrow C^{\infty}(\mathbb{R}^n)/(\tau_2) \leftarrow \cdots C^{\infty}(\mathbb{R}^n)/(\tau_d)$

eformulation: $f \in C^{\infty}(\mathbb{R}^{n})$ $jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow \atop proj.limit} C^{\infty}(\mathbb{R}^{n})/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[x]$ A reformulation:

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

Borel: $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. Ritt: Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$.

$$C^{\infty}(\mathbb{R}^{n})/\!\!/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!/(x)^{2} \leftarrow \cdots \quad C^{\infty}(\mathbb{R}^{n})/\!\!/(x)^{d+1}$$
Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Borel}} \widehat{C^{\infty}(\mathbb{R}^{n})} \to 0.$
Moreover, $C^{\omega}(\mathbb{R}^{n} \setminus o) \cap C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{with}} \widehat{C^{\infty}(\mathbb{R}^{n})}.$

Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2$, $mod(x)^3$, ... Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Example. Let
$$\tau_1(x) = e^{-\frac{1}{x^2}}, \ \tau_2 = e^{-\frac{1}{\tau_1}}, \ \tau_3 = e^{-\frac{1}{\tau_2}}, \dots$$

Q. Suppose a problem is solvable $mod(\tau_1)$, $mod(\tau_2)$, Does there exist a C^{∞} -solution $mod \cap_{\bullet} (\tau_{\bullet})$? $C^{\infty}(\mathbb{R}^n)/_{(\tau_1)} \leftarrow C^{\infty}(\mathbb{R}^n)/_{(\tau_2)} \leftarrow \cdots C^{\infty}(\mathbb{R}^n)/_{(\tau_d)} \cdots \leftarrow$

A reformulation:
$$f \in C^{\infty}(\mathbb{R}^{n})$$

$$jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[x]$$

$$C^{\infty}(\mathbb{R}^{n})/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{2} \leftarrow \cdots \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{d+1}$$

$$\bigcap_{C^{\infty}(\mathbb{R}^{n})/(x)} \bigcap_{C^{\infty}(\mathbb{R}^{n})/(x)} \bigcap_{C^{\infty}(\mathbb{R}^{n})/(x)} \bigcap_{C^{\infty}(\mathbb{R}^{n})/(x)} \bigcap_{C^{\infty}(\mathbb{R}^{n})/(x)} \bigcap_{C^{\infty}(\mathbb{R}^{n})} \bigcap_{C$$

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

Borel: $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. Ritt: Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$.

Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2$, $mod(x)^3$, ... Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Borel: There exists a "
$$C^{\infty}$$
-solution mod (flat functions)". Occasionally we need better approximations

Example. Let
$$\tau_1(x) = e^{-\frac{1}{x^2}}$$
, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$, ...

Q. Suppose a problem is solvable $mod(\tau_1)$, $mod(\tau_2)$, Does there exist a C^{∞} -solution $mod \cap_{\bullet} (\tau_{\bullet})$?

 $C^{\infty}(\mathbb{R}^n)/\!(\tau_1) \leftarrow C^{\infty}(\mathbb{R}^n)/\!(\tau_2) \leftarrow \cdots C^{\infty}(\mathbb{R}^n)/\!(\tau_d) \quad \cdots \leftarrow \quad \lim_{n \to \infty} C^{\infty}(\mathbb{R}^n)/\!(\tau_{\bullet})$

Borel:
$$C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$$
. Ritt: Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. A reformulation: $f \in C^{\infty}(\mathbb{R}^n)$

$$jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow c} C^{\infty}(\mathbb{R}^{n})/(x) \bullet =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[x]$$

$$\bigcap_{proj.limit} C^{\infty}(\mathbb{R}^{n})/(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{2} \leftarrow \cdots C^{\infty}(\mathbb{R}^{n})/(x)^{d+1}$$
Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Borel}} \widehat{C^{\infty}(\mathbb{R}^{n})} \to 0.$
Moreover, $C^{\omega}(\mathbb{R}^{n} \setminus o) \cap C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Ritt}} \widehat{C^{\infty}(\mathbb{R}^{n})}.$

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2$, $mod(x)^3$, ...

Borel: There exists a "
$$C^{\infty}$$
-solution mod (flat functions)". Occasionally we need better approximations.

Example. Let
$$\tau_1(x) = e^{-\frac{1}{x^2}}$$
, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$, ... **Q.** Suppose a problem is solvable $mod(\tau_1)$, $mod(\tau_2)$, Does there exist a C^{∞} -solution $mod \cap_{\bullet} (\tau_{\bullet})$?

 $C^{\infty}(\mathbb{R}^{n})/\!\!/(\tau_{1}) \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!/(\tau_{2}) \leftarrow \cdots C^{\infty}(\mathbb{R}^{n})/\!\!/(\tau_{d}) \quad \cdots \leftarrow \quad \lim_{r \to \infty} C^{\infty}(\mathbb{R}^{n})/\!\!/(\tau_{\bullet}) =: \widehat{C^{\infty}(\mathbb{R}^{n})}^{(\tau_{\bullet})}$

Borel:
$$C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$$
. Ritt: Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. Reformulation: $f \in C^{\infty}(\mathbb{R}^n)$

 $jet_0(f) \leftarrow jet_1(f) \leftarrow \cdots \leftarrow jet_d(f) \leftarrow \cdots \leftarrow \widehat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^n)/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[\![x]\!]$

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

$$C^{\infty}(\mathbb{R}^{n})/\!(x) \leftarrow C^{\infty}(\mathbb{R}^{n})/\!(x)^{2} \leftarrow \cdots \quad C^{\infty}(\mathbb{R}^{n})/\!(x)^{d+1}$$
Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Borel}} \widehat{C^{\infty}(\mathbb{R}^{n})} \to 0.$
Moreover, $C^{\omega}(\mathbb{R}^{n} \setminus o) \cap C^{\infty}(\mathbb{R}^{n}) \xrightarrow{\text{Ritt}} \widehat{C^{\infty}(\mathbb{R}^{n})}.$

Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2$, $mod(x)^3$, ... Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Borel: There exists a "
$$C^{\infty}$$
-solution mod (flat functions)". Occasionally we need better approximations

Example. Let $\tau_1(x) = e^{-\frac{1}{x^2}}$, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$, ...

Example. Let
$$\tau_1(x) = e^{-\frac{1}{x^2}}$$
, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$, ...

Q. Suppose a problem is solvable $mod(\tau_1)$, $mod(\tau_2)$, Does there exist a C^{∞} -solution $mod \cap_{\bullet} (\tau_{\bullet})$?

 $C^{\infty}(\mathbb{R}^n)/\!\!/(\tau_1) \;\leftarrow\; C^{\infty}(\mathbb{R}^n)/\!\!/(\tau_2) \;\leftarrow\; \cdots \;C^{\infty}(\mathbb{R}^n)/\!\!/(\tau_d) \quad \cdots \leftarrow \quad \lim C^{\infty}(\mathbb{R}^n)/\!\!/(\tau_{\bullet}) \;=: \; \widehat{C^{\infty}(\mathbb{R}^n)}^{(\tau_{\bullet})}$

$$jet_{0}(f) \leftarrow jet_{1}(f) \leftarrow \cdots \leftarrow jet_{d}(f) \leftarrow \cdots \leftarrow \hat{f} \in \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/(x)^{\bullet} =: \widehat{C^{\infty}(\mathbb{R}^{n})} = \mathbb{R}[x]$$

$$\bigcap_{C^{\infty}(\mathbb{R}^{n})/(x)} \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{2} \leftarrow \cdots \leftarrow C^{\infty}(\mathbb{R}^{n})/(x)^{d+1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

 \mathbb{R} -analytic

 $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[x]$, $f \to Taylor_o(f)$. What is the image of this map?

A reformulation:

Borel: $C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$. Ritt: Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \mathbb{R}[\![x]\!]$.

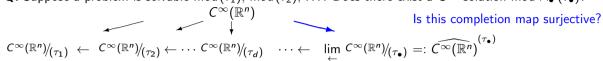
Then: $0 \to (x)^{\infty} \to C^{\infty}(\mathbb{R}^n) \stackrel{Borel}{\longrightarrow} \widehat{C^{\infty}(\mathbb{R}^n)} \to 0.$ Moreover, $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \stackrel{Ritt}{\to} \widehat{C^{\infty}(\mathbb{R}^n)}$.

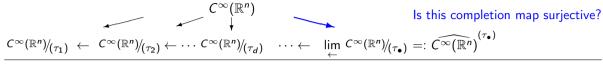
Why is this useful? (approximate solutions) Given a problem, let's solve it $mod(x)^2$, $mod(x)^3$, ... Borel: There exists a " C^{∞} -solution mod (flat functions)". Occasionally we need better approximations.

Borel: There exists a "
$$C^{\infty}$$
-solution mod (flat functions)". Occasionally we need better approximations

Example. Let
$$\tau_1(x) = e^{-\frac{1}{x^2}}$$
, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$, ... Q. Suppose a problem is solvable $mod(\tau_1)$, $mod(\tau_2)$, Does there exist a C^{∞} -solution $mod \cap_{\bullet} (\tau_{\bullet})$?

Is this completion map surjective? $C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{1}) \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{2}) \leftarrow \cdots C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{d}) \quad \cdots \leftarrow \quad \lim_{r \to \infty} C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{\bullet}) =: \widehat{C^{\infty}(\mathbb{R}^{n})}^{(\tau_{\bullet})}$





Q. Take a chain of ideals, $C^{\infty}(\mathbb{R}^n) = I_0 \supset I_1 \supset \cdots$

3/8

$$C^{\infty}(\mathbb{R}^{n})$$
 Is this completion map surjective?
$$C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{1}) \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{2}) \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{\bullet}) =: \widehat{C^{\infty}(\mathbb{R}^{n})}^{(\tau_{\bullet})}$$

Q. Take a chain of ideals, $C^{\infty}(\mathbb{R}^n) = I_0 \supset I_1 \supset \cdots$ Is the completion map $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}^{(I_{\bullet})}$ surjective?

$$C^{\infty}(\mathbb{R}^{n})$$
 Is this completion map surjective?
$$C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{1}) \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{2}) \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{\bullet}) =: \widehat{C^{\infty}(\mathbb{R}^{n})}^{(\tau_{\bullet})}$$

Q. Take a chain of ideals,
$$C^{\infty}(\mathbb{R}^n) = I_0 \supset I_1 \supset \cdots$$
 Is the completion map $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}^{(I_{\bullet})}$ surjective?

Remarks. 0.

Why to ask this? (A meaningless pure algebra?)

$$C^{\infty}(\mathbb{R}^{n})$$
 Is this completion map surjective?
$$C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{1}) \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{2}) \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{\bullet}) =: \widehat{C^{\infty}(\mathbb{R}^{n})}^{(\tau_{\bullet})}$$

Q. Take a chain of ideals, $C^{\infty}(\mathbb{R}^n) = I_0 \supset I_1 \supset \cdots$ Is the completion map $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}^{(I_{\bullet})}$ surjective?

Why to ask this? (A meaningless pure algebra?) E.g. for approximations. Also see the next slide.

Remarks. 0.

$$C^{\infty}(\mathbb{R}^{n})$$
 Is this completion map surjective?
$$C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{1}) \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{2}) \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{\bullet}) =: \widehat{C^{\infty}(\mathbb{R}^{n})}^{(\tau_{\bullet})}$$

Q. Take a chain of ideals, $C^{\infty}(\mathbb{R}^n) = I_0 \supset I_1 \supset \cdots$ Is the completion map $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}^{(I_{\bullet})}$ surjective?

Remarks. 0.

- Why to ask this? (A meaningless pure algebra?) E.g. for approximations. Also see the next slide.
- 1. This question cannot be answered by pure algebra. (Analysis is needed.)
 - . This question cannot be answered by pure algebra. (Analysis is needed.)

$$C^{\infty}(\mathbb{R}^{n})$$
 Is this completion map surjective?
$$C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{1}) \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{2}) \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/\!\!(\tau_{\bullet}) =: \widehat{C^{\infty}(\mathbb{R}^{n})}^{(\tau_{\bullet})}$$

Q. Take a chain of ideals, $C^{\infty}(\mathbb{R}^n) = I_0 \supset I_1 \supset \cdots$ Is the completion map $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}^{(I_{\bullet})}$ surjective?

Remarks. 0. Why to ask this? (A meaningless pure algebra?) E.g. for approximations. Also see the next slide.

- 1. This question cannot be answered by pure algebra. (Analysis is needed.)
- 2. There are many versions of C^{∞} -rings. E.g., let $\mathcal{U}_{open} \subseteq \mathbb{R}^n$, take $C^{\infty}(\mathcal{U})$,

Example. Let $\tau_1(x) = e^{-\frac{1}{x^2}}$, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$, ... **Q.** Suppose a problem is solvable $mod(\tau_1)$, $mod(\tau_2)$, Does there exist a C^{∞} -solution $mod \cap_{\bullet} (\tau_{\bullet})$?

Is this completion map surjective to the completion of the compl

$$C^{\infty}(\mathbb{R}^{n}) \qquad \text{Is this completion map surjective?}$$

$$C^{\infty}(\mathbb{R}^{n})/\!\!/_{(\tau_{1})} \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!/_{(\tau_{2})} \leftarrow \cdots C^{\infty}(\mathbb{R}^{n})/\!/_{(\tau_{d})} \quad \cdots \leftarrow \quad \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/\!/_{(\tau_{\bullet})} =: \widehat{C^{\infty}(\mathbb{R}^{n})}^{(\tau_{\bullet})}$$

Q. Take a chain of ideals, $C^{\infty}(\mathbb{R}^n) = I_0 \supset I_1 \supset \cdots$ Is the completion map $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}^{(I_{\bullet})}$ surjective?

Remarks. 0.

- Why to ask this? (A meaningless pure algebra?) E.g. for approximations. Also see the next slide.
- 1. This prosection assumed by a processed by a proc
- 1. This question cannot be answered by pure algebra. (Analysis is needed.)
- 2. There are many versions of C^{∞} -rings. E.g., let $\mathcal{U}_{open} \subseteq \mathbb{R}^n$, take $C^{\infty}(\mathcal{U})$, $C^{\infty}(\overline{\mathcal{U}})$,

Example. Let $\tau_1(x) = e^{-\frac{1}{x^2}}$, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$, ... **Q.** Suppose a problem is solvable $mod(\tau_1)$, $mod(\tau_2)$, Does there exist a C^{∞} -solution $mod \cap_{\bullet} (\tau_{\bullet})$?

Is this completion map surjective that C^{∞} is the completion map surjective map surjective.

$$C^{\infty}(\mathbb{R}^{n}) \qquad \text{Is this completion map surjective?}$$

$$C^{\infty}(\mathbb{R}^{n})/\!\!/_{(\tau_{1})} \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!/_{(\tau_{2})} \leftarrow \cdots C^{\infty}(\mathbb{R}^{n})/\!/_{(\tau_{d})} \quad \cdots \leftarrow \quad \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/\!/_{(\tau_{\bullet})} =: \widehat{C^{\infty}(\mathbb{R}^{n})}^{(\tau_{\bullet})}$$

Q. Take a chain of ideals, $C^{\infty}(\mathbb{R}^n) = I_0 \supset I_1 \supset \cdots$ Is the completion map $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}^{(I_{\bullet})}$ surjective? **Remarks.** 0.

- Why to ask this? (A meaningless pure algebra?) E.g. for approximations. Also see the next slide.
- vvily to ask this: (A meaningless pure algebra!) L.g. for approximations. Also see the flext slid
- 1. This question cannot be answered by pure algebra. (Analysis is needed.)
- 2. There are many versions of C^{∞} -rings. E.g., let $\mathcal{U}_{open} \subseteq \mathbb{R}^n$, take $C^{\infty}(\mathcal{U})$, $C^{\infty}(\overline{\mathcal{U}})$, $C^{\infty}(\mathbb{R}^n, o)$,

3/8

$$C^{\infty}(\mathbb{R}^{n}) \qquad \text{Is this completion map surjective?}$$

$$C^{\infty}(\mathbb{R}^{n})/\!\!/_{(\tau_{1})} \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!/_{(\tau_{2})} \leftarrow \cdots C^{\infty}(\mathbb{R}^{n})/\!/_{(\tau_{d})} \quad \cdots \leftarrow \quad \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/\!/_{(\tau_{\bullet})} =: \widehat{C^{\infty}(\mathbb{R}^{n})}^{(\tau_{\bullet})}$$

Q. Take a chain of ideals, $C^{\infty}(\mathbb{R}^n) = I_0 \supset I_1 \supset \cdots$ Is the completion map $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}^{(I_{\bullet})}$ surjective?

Remarks. 0.

- Why to ask this? (A meaningless pure algebra?) E.g. for approximations. Also see the next slide.
- 1. This question cannot be answered by pure algebra. (Analysis is needed.)
- 2. There are many versions of C^{∞} -rings. E.g., let $\mathcal{U}_{open} \subseteq \mathbb{R}^n$, take $C^{\infty}(\mathcal{U})$, $C^{\infty}(\overline{\mathcal{U}})$, $C^{\infty}(\mathbb{R}^n, o)$, $C^{\infty}(\mathbb{R}^n, Z)$, i.e. germs of functions along Z,

$$C^{\infty}(\mathbb{R}^{n}) \qquad \text{Is this completion map surjective?}$$

$$C^{\infty}(\mathbb{R}^{n})/\!\!/_{(\tau_{1})} \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!/_{(\tau_{2})} \leftarrow \cdots C^{\infty}(\mathbb{R}^{n})/\!/_{(\tau_{d})} \quad \cdots \leftarrow \quad \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/\!/_{(\tau_{\bullet})} =: \widehat{C^{\infty}(\mathbb{R}^{n})}^{(\tau_{\bullet})}$$

Q. Take a chain of ideals, $C^{\infty}(\mathbb{R}^n) = I_0 \supset I_1 \supset \cdots$ Is the completion map $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}^{(I_{\bullet})}$ surjective? Remarks. 0.

Why to ask this? (A meaningless pure algebra?) E.g. for approximations. Also see the next slide.

- 1. This question cannot be answered by pure algebra. (Analysis is needed.)
- 2. There are many versions of C^{∞} -rings. E.g., let $\mathcal{U}_{open} \subseteq \mathbb{R}^n$, take $C^{\infty}(\mathcal{U})$, $C^{\infty}(\overline{\mathcal{U}})$, $C^{\infty}(\mathbb{R}^n, o)$, $C^{\infty}(\mathbb{R}^n, \mathbb{Z})$, i.e. germs of functions along \mathbb{Z} , or $C^{\infty}(\dots)/J$.

$$C^{\infty}(\mathbb{R}^{n}) \qquad \text{Is this completion map surjective?}$$

$$C^{\infty}(\mathbb{R}^{n})/\!\!/_{(\tau_{1})} \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!/_{(\tau_{2})} \leftarrow \cdots C^{\infty}(\mathbb{R}^{n})/\!/_{(\tau_{d})} \quad \cdots \leftarrow \quad \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/\!/_{(\tau_{\bullet})} =: \widehat{C^{\infty}(\mathbb{R}^{n})}^{(\tau_{\bullet})}$$

Q. Take a chain of ideals, $C^{\infty}(\mathbb{R}^n) = I_0 \supset I_1 \supset \cdots$ Is the completion map $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}^{(I_{\bullet})}$ surjective?

Remarks. 0.

Why to ask this? (A meaningless pure algebra?) E.g. for approximations. Also see the next slide.

- 1. This question cannot be answered by pure algebra. (Analysis is needed.)
- 2. There are many versions of C^{∞} -rings. E.g., let $\mathcal{U}_{open} \subseteq \mathbb{R}^n$, take $C^{\infty}(\mathcal{U})$, $C^{\infty}(\overline{\mathcal{U}})$, $C^{\infty}(\mathbb{R}^n, o)$, $C^{\infty}(\mathbb{R}^n, \mathbb{Z})$, i.e. germs of functions along \mathbb{Z} , or $C^{\infty}(\dots)/J$.
- In each case we have the surjectivity question. They are all similar and related.

Example. Let $\tau_1(x) = e^{-\frac{1}{x^2}}$, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$, ... **Q.** Suppose a problem is solvable $mod(\tau_1)$, $mod(\tau_2)$, Does there exist a C^{∞} -solution $mod \cap_{\bullet} (\tau_{\bullet})$?

Is this completion map surjective that C^{∞} is the completion map surjective map surjective.

$$C^{\infty}(\mathbb{R}^{n}) \qquad \text{Is this completion map surjective?}$$

$$C^{\infty}(\mathbb{R}^{n})/\!\!/_{(\tau_{1})} \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!/_{(\tau_{2})} \leftarrow \cdots C^{\infty}(\mathbb{R}^{n})/\!\!/_{(\tau_{d})} \quad \cdots \leftarrow \quad \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/\!\!/_{(\tau_{\bullet})} =: \widehat{C^{\infty}(\mathbb{R}^{n})}^{(\tau_{\bullet})}$$

Q. Take a chain of ideals, $C^{\infty}(\mathbb{R}^n) = I_0 \supset I_1 \supset \cdots$ Is the completion map $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}^{(I_{\bullet})}$ surjective?

- Remarks. 0.
- Why to ask this? (A meaningless pure algebra?) E.g. for approximations. Also see the next slide.
- 1. This question cannot be answered by pure algebra. (Analysis is needed.)
- 2. There are many versions of C^{∞} -rings. E.g., let $\mathcal{U}_{open} \subseteq \mathbb{R}^n$, take $C^{\infty}(\mathcal{U})$, $C^{\infty}(\overline{\mathcal{U}})$, $C^{\infty}(\mathbb{R}^n, o)$, $C^{\infty}(\mathbb{R}^n, Z)$, i.e. germs of functions along Z, or $C^{\infty}(\cdots)/J$.
- In each case we have the surjectivity question. They are all similar and related.
- 3. Below we will answer this question in the Borel-case, Whitney-case, general case.

Example. Let $\tau_1(x) = e^{-\frac{1}{x^2}}$, $\tau_2 = e^{-\frac{1}{\tau_1}}$, $\tau_3 = e^{-\frac{1}{\tau_2}}$, ... **Q.** Suppose a problem is solvable $mod(\tau_1)$, $mod(\tau_2)$, Does there exist a C^{∞} -solution $mod \cap_{\bullet} (\tau_{\bullet})$?

Is this completion map surjective that C^{∞} is the completion map surjective map surjective.

$$C^{\infty}(\mathbb{R}^{n}) \qquad \text{Is this completion map surjective?}$$

$$C^{\infty}(\mathbb{R}^{n})/\!\!/_{(\tau_{1})} \leftarrow C^{\infty}(\mathbb{R}^{n})/\!\!/_{(\tau_{2})} \leftarrow \cdots C^{\infty}(\mathbb{R}^{n})/\!\!/_{(\tau_{d})} \quad \cdots \leftarrow \quad \lim_{\leftarrow} C^{\infty}(\mathbb{R}^{n})/\!\!/_{(\tau_{\bullet})} =: \widehat{C^{\infty}(\mathbb{R}^{n})}^{(\tau_{\bullet})}$$

Q. Take a chain of ideals, $C^{\infty}(\mathbb{R}^n) = I_0 \supset I_1 \supset \cdots$ Is the completion map $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}^{(I_{\bullet})}$ surjective?

- Remarks. 0.
- Why to ask this? (A meaningless pure algebra?) E.g. for approximations. Also see the next slide.
- 1. This question cannot be answered by pure algebra. (Analysis is needed.)
- 2. There are many versions of C^{∞} -rings. E.g., let $\mathcal{U}_{open} \subseteq \mathbb{R}^n$, take $C^{\infty}(\mathcal{U})$, $C^{\infty}(\overline{\mathcal{U}})$, $C^{\infty}(\mathbb{R}^n, o)$, $C^{\infty}(\mathbb{R}^n, Z)$, i.e. germs of functions along Z, or $C^{\infty}(\cdots)/J$.
- In each case we have the surjectivity question. They are all similar and related.
- 3. Below we will answer this question in the Borel-case, Whitney-case, general case.

Example. 1.

Example. 1. $I_i = (x)^j \subset C^{\infty}(\mathbb{R}^n)$.

Example. 1. $I_i = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x] \stackrel{\text{Borel}}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

Example. 1.
$$I_j = (x)^j \subset C^{\infty}(\mathbb{R}^n)$$
. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x] \stackrel{\text{Borel}}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration l_{\bullet} is equivalent to $(x)^{\bullet}$.

- **Example.** 1. $I_j = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[\![x]\!] \stackrel{\text{Borel}}{\twoheadleftarrow} C^{\infty}(\mathbb{R}^n)$.
- 2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_i} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_j$

- **Example.** 1. $I_j = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[\![x]\!] \stackrel{\text{Borel}}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.
- 2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_j} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_j$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$.

Example. 1. $I_j = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[\![x]\!] \stackrel{\text{Borel}}{\twoheadleftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_j} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_j$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[x] \stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

Example. 1. $I_j = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[\![x]\!] \stackrel{\text{Borel}}{\twoheadleftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_j} \subseteq (x)^{j}$ and $(x)^{d_j} \subseteq I_j$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[x]$ $\stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel".

Example. 1. $I_j = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[\![x]\!] \stackrel{\text{Borel}}{\twoheadleftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_j} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_j$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[x]$ $\stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$,

Example. 1. $I_j = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[\![x]\!] \stackrel{\text{Borel}}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_j} \subseteq (x)^{j}$ and $(x)^{d_j} \subseteq I_j$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[x]$ $\stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$.

Example. 1. $I_j = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[\![x]\!] \stackrel{\text{Borel}}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_j} \subseteq (x)^{j}$ and $(x)^{d_j} \subseteq I_j$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[x]$ $\stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^\infty(\mathbb{R}^n)\supset I_1\supset I_2\supset\cdots$, such that $V(I_\bullet)=o\in\mathbb{R}^n$.

1. Then $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}$.

Example. 1. $I_j = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[\![x]\!] \stackrel{\text{Borel}}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_j} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_j$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[x]$ $\stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^\infty(\mathbb{R}^n)\supset I_1\supset I_2\supset\cdots$, such that $V(I_\bullet)=o\in\mathbb{R}^n$.

- 1. Then $C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}(\mathbb{R}^n)}$.
- 2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}(\mathbb{R}^n)}$.

Example. 1. $I_i = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x] \stackrel{Borel}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_i} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_i$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[\![x]\!] \stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$.

1. Then $C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$.

2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$.

Why "transfinite"?

Example. 1. $I_i = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x] \stackrel{Borel}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_i} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_i$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[\![x]\!] \stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$.

- 1. Then $C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$.
- 2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \twoheadrightarrow C^{\infty}(\mathbb{R}^n)$.

Why "transfinite"? • For $I_i = (x)^j$ every element of $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x]$ specifies derivatives $\{f^{(j)}|_{o}\}$ of all finite orders.

Example. 1. $I_i = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x] \stackrel{\text{Borel}}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_i} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_i$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[x] \stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$.

- 1. Then $C^{\infty}(\mathbb{R}^n) \twoheadrightarrow C^{\infty}(\mathbb{R}^n)$.
- 2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$.

Why "transfinite"? • For $I_i = (x)^j$ every element of $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x]$ specifies derivatives $\{f^{(j)}|_o\}$ of all Borel: every prescribed set of all (finite) derivatives is C^{∞} -realizable. finite orders.

Example. 1. $I_i = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x] \stackrel{Borel}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_i} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_i$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[\![x]\!] \stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$.

- 1. Then $C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$.
- 2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$.

Why "transfinite"? • For $I_i = (x)^j$ every element of $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x]$ specifies derivatives $\{f^{(j)}|_o\}$ of all

- Borel: every prescribed set of all (finite) derivatives is C^{∞} -realizable. finite orders. • Suppose $I_i \subset (x)^{\infty}$.

Example. 1. $I_i = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x] \stackrel{\text{Borel}}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_i} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_j$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[\![x]\!] \stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$.

1. Then $C^{\infty}(\mathbb{R}^n) \twoheadrightarrow C^{\infty}(\mathbb{R}^n)$.

2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$.

Why "transfinite"? • For $I_i = (x)^j$ every element of $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x]$ specifies derivatives $\{f^{(j)}|_o\}$ of all Borel: every prescribed set of all (finite) derivatives is C^{∞} -realizable. finite orders.

• Suppose $I_i \subset (x)^{\infty}$. Then an element of $\widehat{C^{\infty}(\mathbb{R}^n)}$ specifies "derivatives of prescribed transfinite orders".

Example. 1. $I_i = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x] \stackrel{\text{Borel}}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_i} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_j$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[\![x]\!] \stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$.

1. Then $C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$.

2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$.

Why "transfinite"? • For $I_i = (x)^j$ every element of $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x]$ specifies derivatives $\{f^{(j)}|_o\}$ of all Borel: every prescribed set of all (finite) derivatives is C^{∞} -realizable. finite orders.

• Suppose $I_i \subset (x)^{\infty}$. Then an element of $\widehat{C^{\infty}(\mathbb{R}^n)}$ specifies "derivatives of prescribed transfinite orders". Each such collection of "transfinite derivatives" is C^{∞} -realizable.

Example. 1. $I_i = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x] \stackrel{\text{Borel}}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_i} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_j$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[\![x]\!] \stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$.

1. Then $C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$.

2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$.

Why "transfinite"? • For $I_i = (x)^j$ every element of $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x]$ specifies derivatives $\{f^{(j)}|_o\}$ of all Borel: every prescribed set of all (finite) derivatives is C^{∞} -realizable. finite orders.

• Suppose $I_i \subset (x)^{\infty}$. Then an element of $\widehat{C^{\infty}(\mathbb{R}^n)}$ specifies "derivatives of prescribed transfinite orders".

Each such collection of "transfinite derivatives" is C^{∞} -realizable.

What is "ghost-free"?

Example. 1. $I_j = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x] \stackrel{Borel}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_j} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_j$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[x]$ $\stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^{\infty}(\mathbb{R}^n)\supset I_1\supset I_2\supset\cdots$, such that $V(I_{\bullet})=o\in\mathbb{R}^n$.

1. Then $C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$.

2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}(\mathbb{R}^n)}$.

Why "transfinite"? • For $I_j = (x)^j$ every element of $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[\![x]\!]$ specifies derivatives $\{f^{(j)}|_o\}$ of all finite orders. Borel: every prescribed set of all (finite) derivatives is C^{∞} -realizable.

• Suppose $I_j \subset (x)^{\infty}$. Then an element of $\widehat{C^{\infty}(\mathbb{R}^n)}$ specifies "derivatives of prescribed transfinite orders". Each such collection of "transfinite derivatives" is C^{∞} -realizable.

What is "ghost-free"?

Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$, for some $\tau \in C^{\infty}(\mathbb{R}^n)$.

Example. 1. $I_i = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x] \stackrel{\text{Borel}}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_i} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_j$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[x] \stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$.

1. Then $C^{\infty}(\mathbb{R}^n) \twoheadrightarrow C^{\infty}(\mathbb{R}^n)$.

2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$.

Why "transfinite"? • For $I_i = (x)^j$ every element of $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x]$ specifies derivatives $\{f^{(j)}|_o\}$ of all Borel: every prescribed set of all (finite) derivatives is C^{∞} -realizable. finite orders.

• Suppose $I_i \subset (x)^{\infty}$. Then an element of $\widehat{C^{\infty}(\mathbb{R}^n)}$ specifies "derivatives of prescribed transfinite orders". Each such collection of "transfinite derivatives" is C^{∞} -realizable.

What is "ghost-free"?

Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$, for some $\tau \in C^{\infty}(\mathbb{R}^n)$. **Def.** $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.

Example. 1. $I_j = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x] \overset{\text{Borel}}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_j} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_j$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[x]$ $\stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^{\infty}(\mathbb{R}^n)\supset I_1\supset I_2\supset\cdots$, such that $V(I_{\bullet})=o\in\mathbb{R}^n$.

1. Then $C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}(\mathbb{R}^n)}$.

2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \twoheadrightarrow C^{\infty}(\mathbb{R}^n)$.

Why "transfinite"? • For $I_j = (x)^j$ every element of $C^{\infty}(\mathbb{R}^n) = \mathbb{R}[\![x]\!]$ specifies derivatives $\{f^{(j)}|_o\}$ of all finite orders.

Borel: every prescribed set of all (finite) derivatives is C^{∞} -realizable.

• Suppose $I_i \subset (x)^{\infty}$. Then an element of $C^{\infty}(\mathbb{R}^n)$ specifies "derivatives of prescribed transfinite orders".

• Suppose $I_j \subset (x)^{\infty}$. Then an element of $\widehat{C^{\infty}(\mathbb{R}^n)}$ specifies "derivatives of prescribed transfinite orders". Each such collection of "transfinite derivatives" is C^{∞} -realizable.

What is "ghost-free"?

Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$, for some $\tau \in C^{\infty}(\mathbb{R}^n)$. **Def.** $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.

Bad example:

Example. 1. $I_j = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} = \mathbb{R}[x] \overset{\text{Borel}}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_j} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_j$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[x]$ $\stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$. 1. Then $C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}(\mathbb{R}^n)}$.

2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}$.

Why "transfinite"? • For $I_j = (x)^j$ every element of $C^{\infty}(\mathbb{R}^n) = \mathbb{R}[\![x]\!]$ specifies derivatives $\{f^{(j)}|_o\}$ of all finite orders. Borel: every prescribed set of all (finite) derivatives is C^{∞} -realizable.

• Suppose $I_j \subset (x)^{\infty}$. Then an element of $\widehat{C^{\infty}(\mathbb{R}^n)}$ specifies "derivatives of prescribed transfinite orders". Each such collection of "transfinite derivatives" is C^{∞} -realizable.

What is "ghost-free"?

Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$, for some $\tau \in C^{\infty}(\mathbb{R}^n)$. **Def.** $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.

Bad example: the ghost ideal $I(\mathbb{P}^n, a) = \{a\}$ the functions with zero gerr

Bad example: the ghost ideal. $I(\mathbb{R}^n, o) = \{\text{all the functions with zero germs at } o\}.$

Example. 1. $I_j = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $C^{\infty}(\mathbb{R}^n) = \mathbb{R}[x] \stackrel{\text{Borel}}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_j} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_j$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[x]$ $\stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$. 1. Then $C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}(\mathbb{R}^n)}$.

2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}(\mathbb{R}^n)}$.

Why "transfinite"? • For $I_j = (x)^j$ every element of $C^{\infty}(\mathbb{R}^n) = \mathbb{R}[\![x]\!]$ specifies derivatives $\{f^{(j)}|_o\}$ of all finite orders. Borel: every prescribed set of all (finite) derivatives is C^{∞} -realizable.

• Suppose $I_j \subset (x)^{\infty}$. Then an element of $\widehat{C^{\infty}(\mathbb{R}^n)}$ specifies "derivatives of prescribed transfinite orders". Each such collection of "transfinite derivatives" is C^{∞} -realizable.

What is "ghost-free"?

Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$, for some $\tau \in C^{\infty}(\mathbb{R}^n)$. **Def.** $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.

Bad example: the ghost ideal. $I(\mathbb{R}^n, o) = \{\text{all the functions with zero germs at } o\}.$

Here $V(I(\mathbb{R}^n, o)) = o \in \mathbb{R}^n$.

Example. 1. $I_j = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $C^{\infty}(\mathbb{R}^n) = \mathbb{R}[x] \stackrel{\text{Borel}}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_j} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_j$ for each $j \in \mathbb{N}$ and a corresponding $d_j \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[\![x]\!] \stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^{\infty}(\mathbb{R}^n)\supset I_1\supset I_2\supset\cdots$, such that $V(I_{\bullet})=o\in\mathbb{R}^n$.

1. Then $C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}}(\mathbb{R}^n)$. 2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}}(\mathbb{R}^n)$.

Why "transfinite"? • For $I_j = (x)^j$ every element of $C^{\infty}(\mathbb{R}^n) = \mathbb{R}[\![x]\!]$ specifies derivatives $\{f^{(j)}|_o\}$ of all finite orders. Borel: every prescribed set of all (finite) derivatives is C^{∞} -realizable.

• Suppose $I_j \subset (x)^{\infty}$. Then an element of $\widehat{C^{\infty}(\mathbb{R}^n)}$ specifies "derivatives of prescribed transfinite orders". Each such collection of "transfinite derivatives" is C^{∞} -realizable.

What is "ghost-free"?

Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$, for some $\tau \in C^{\infty}(\mathbb{R}^n)$. **Def.** $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.

Bad example: the ghost ideal. $I(\mathbb{R}^n, o) = \{\text{all the functions with zero germs at } o\}.$

Here $V(I(\mathbb{R}^n, o)) = o \in \mathbb{R}^n$. But for each $\tau \in I(\mathbb{R}^n, o)$ have: $V(\tau) \supset Ball_{\epsilon_{\tau}}(o)$

Example. 1. $I_j = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $C^{\infty}(\mathbb{R}^n) = \mathbb{R}[x] \stackrel{\text{Borel}}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_j} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_j$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[x]$ $\stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$. 1. Then $C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}(\mathbb{R}^n)}$.

2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}$.

Why "transfinite"? • For $I_j = (x)^j$ every element of $C^{\infty}(\mathbb{R}^n) = \mathbb{R}[\![x]\!]$ specifies derivatives $\{f^{(j)}|_o\}$ of all finite orders.

Borel: every prescribed set of all (finite) derivatives is C^{∞} -realizable.

• Suppose $I_j \subset (x)^{\infty}$. Then an element of $C^{\infty}(\mathbb{R}^n)$ specifies "derivatives of prescribed transfinite orders". Each such collection of "transfinite derivatives" is C^{∞} -realizable.

What is "ghost-free"?

Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$, for some $\tau \in C^{\infty}(\mathbb{R}^n)$. **Def.** $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.

Bad example: the ghost ideal. $I(\mathbb{R}^n, o) = \{\text{all the functions with zero germs at } o\}$.

Here $V(I(\mathbb{R}^n, o)) = o \in \mathbb{R}^n$. But for each $\tau \in I(\mathbb{R}^n, o)$ have: $V(\tau) \supset Ball_{\epsilon_\tau}(o)$

Example. 1. $I_j = (x)^j \subset C^{\infty}(\mathbb{R}^n)$. Then $C^{\infty}(\mathbb{R}^n) = \mathbb{R}[x] \stackrel{\text{Borel}}{\leftarrow} C^{\infty}(\mathbb{R}^n)$.

2. Suppose the filtration I_{\bullet} is equivalent to $(x)^{\bullet}$. Namely, $I_{d_j} \subseteq (x)^j$ and $(x)^{d_j} \subseteq I_j$ for each $j \in \mathbb{N}$ and a corresponding $d_i \in \mathbb{N}$. Then $\widehat{C^{\infty}(\mathbb{R}^n)} \cong \mathbb{R}[x]$ $\stackrel{\textit{Borel}}{\longleftarrow} C^{\infty}(\mathbb{R}^n)$.

"Transfinite lemma of Borel". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$. 1. Then $C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}(\mathbb{R}^n)}$.

2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}$.

Why "transfinite"? • For $I_j = (x)^j$ every element of $C^{\infty}(\mathbb{R}^n) = \mathbb{R}[\![x]\!]$ specifies derivatives $\{f^{(j)}|_o\}$ of all finite orders.

Borel: every prescribed set of all (finite) derivatives is C^{∞} -realizable.

• Suppose $I_j \subset (x)^{\infty}$. Then an element of $C^{\infty}(\mathbb{R}^n)$ specifies "derivatives of prescribed transfinite orders". Each such collection of "transfinite derivatives" is C^{∞} -realizable.

What is "ghost-free"?

Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$, for some $\tau \in C^{\infty}(\mathbb{R}^n)$. **Def.** $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.

Bad example: the ghost ideal. $I(\mathbb{R}^n, o) = \{\text{all the functions with zero germs at } o\}$.

Here $V(I(\mathbb{R}^n, o)) = o \in \mathbb{R}^n$. But for each $\tau \in I(\mathbb{R}^n, o)$ have: $V(\tau) \supset Ball_{\epsilon_\tau}(o)$

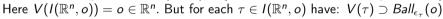
"Transfinite Borel lemma". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$.

- 1. Then $C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}(\mathbb{R}^n)}$.
- 2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}(\mathbb{R}^n)}$.

Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$ for some $\tau \in C^{\epsilon}(\mathbb{R}^n)$.

Def. $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.

Example: the ghost ideal $I(\mathbb{R}^n, o) = \{\text{all the functions with zero germs at } o\}.$



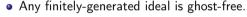
"Transfinite Borel lemma". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset l_1 \supset l_2 \supset \cdots$, such that $V(l_{\bullet}) = o \in \mathbb{R}^n$.

- 1. Then $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}$.
- 2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}(\mathbb{R}^n)}$.

Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$ for some $\tau \in C^{\in}(\mathbb{R}^n)$.

Def. $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.

Example: the ghost ideal $I(\mathbb{R}^n, o) = \{\text{all the functions with zero germs at } o\}.$



"Transfinite Borel lemma". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$.

- 1. Then $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}$.
- 2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}(\mathbb{R}^n)}$.

Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$ for some $\tau \in C^{\in}(\mathbb{R}^n)$.

Def. $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.

Example: the ghost ideal $I(\mathbb{R}^n, o) = \{\text{all the functions with zero germs at } o\}.$

Here $V(I(\mathbb{R}^n,o))=o\in\mathbb{R}^n$. But for each $\tau\in I(\mathbb{R}^n,o)$ have: $V(\tau)\supset Ball_{\epsilon_\tau}(o)$

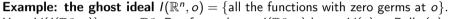


"Transfinite Borel lemma". Take a filtration $C^{\infty}(\mathbb{R}^n)\supset I_1\supset I_2\supset\cdots$, such that $V(I_{\bullet})=o\in\mathbb{R}^n$.

- 1. Then $C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$.
- 2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$.

Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$ for some $\tau \in C^{\epsilon}(\mathbb{R}^n)$.

Def. $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.



Here $V(I(\mathbb{R}^n, o)) = o \in \mathbb{R}^n$. But for each $\tau \in I(\mathbb{R}^n, o)$ have: $V(\tau) \supset Ball_{\epsilon_{-}}(o)$

• Ideals in $C^{\infty}(\mathcal{U})$ can be complicated.

"Transfinite Borel lemma". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$.

- 1. Then $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}$.
- 2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}(\mathbb{R}^n)}$.

Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$ for some $\tau \in C^{\epsilon}(\mathbb{R}^n)$.

Def. $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.

Example: the ghost ideal $I(\mathbb{R}^n, o) = \{\text{all the functions with zero germs at } o\}$. Here $V(I(\mathbb{R}^n, o)) = o \in \mathbb{R}^n$. But for each $\tau \in I(\mathbb{R}^n, o)$ have: $V(\tau) \supset Ball_{\epsilon_n}(o)$

- Any finitely-generated ideal is ghost-free. For each $Z \subset \mathbb{R}^n$ the ideal $I(Z)^{\infty}$ is ghost-free.
- Ideals in $C^{\infty}(\mathcal{U})$ can be complicated. "Many ghosts" can appear, and "in various ways".

"Transfinite Borel lemma". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$.

- 1. Then $C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}(\mathbb{R}^n)}$.
- 2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}(\mathbb{R}^n)}$.

Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$ for some $\tau \in C^{\epsilon}(\mathbb{R}^n)$.

Def. $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.

Example: the ghost ideal $I(\mathbb{R}^n, o) = \{\text{all the functions with zero germs at } o\}$. Here $V(I(\mathbb{R}^n, o)) = o \in \mathbb{R}^n$. But for each $\tau \in I(\mathbb{R}^n, o)$ have: $V(\tau) \supset Ball_{\epsilon_n}(o)$

- Any finitely-generated ideal is ghost-free. For each $Z \subset \mathbb{R}^n$ the ideal $I(Z)^{\infty}$ is ghost-free.
- Ideals in $C^{\infty}(\mathcal{U})$ can be complicated. "Many ghosts" can appear, and "in various ways".
- Ghost-free ideals behave well in various ways. E.g.:

"Transfinite Borel lemma". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$.

- 1. Then $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}$.
- 2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}(\mathbb{R}^n)}$.

Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$ for some $\tau \in C^{\in}(\mathbb{R}^n)$. **Def.** $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.

Example: the ghost ideal $I(\mathbb{R}^n, o) = \{\text{all the functions with zero germs at } o\}.$

Here $V(I(\mathbb{R}^n,o))=o\in\mathbb{R}^n$. But for each $au\in I(\mathbb{R}^n,o)$ have: $V(au)\supset \textit{Ball}_{\epsilon_{ au}}(o)$

- Ideals in $C^{\infty}(\mathcal{U})$ can be complicated. "Many ghosts" can appear, and "in various ways".
- Ideals in $C^{-1}(u)$ can be complicated. Many gnosts can appear, and in various ways
- Ghost-free ideals behave well in various ways. E.g.:

(Whitney-approximation for ideals)

"Transfinite Borel lemma". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$.

- 1. Then $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}$.
- 2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$.

Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$ for some $\tau \in C^{\epsilon}(\mathbb{R}^n)$. **Def.** $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.

Example: the ghost ideal $I(\mathbb{R}^n, o) = \{\text{all the functions with zero germs at } o\}.$

Here $V(I(\mathbb{R}^n, o)) = o \in \mathbb{R}^n$. But for each $\tau \in I(\mathbb{R}^n, o)$ have: $V(\tau) \supset Ball_{\epsilon_{-}}(o)$

- Ideals in $C^{\infty}(\mathcal{U})$ can be complicated. "Many ghosts" can appear, and "in various ways".
- Ghost-free ideals behave well in various ways. E.g.:

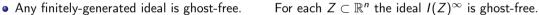
(Whitney-approximation for ideals) Let $I \subset C^{\infty}(\mathbb{R}^n)$ be ghost-free, denote $Z := V(I) \subset \mathbb{R}^n$.

"Transfinite Borel lemma". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$.

- 1. Then $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}$.
- 2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \twoheadrightarrow C^{\infty}(\mathbb{R}^n)$.

Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$ for some $\tau \in C^{\epsilon}(\mathbb{R}^n)$. **Def.** $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.

Example: the ghost ideal $I(\mathbb{R}^n, o) = \{\text{all the functions with zero germs at } o\}.$ Here $V(I(\mathbb{R}^n, o)) = o \in \mathbb{R}^n$. But for each $\tau \in I(\mathbb{R}^n, o)$ have: $V(\tau) \supset Ball_{\epsilon_{-}}(o)$



- Ideals in $C^{\infty}(\mathcal{U})$ can be complicated. "Many ghosts" can appear, and "in various ways".
- Ghost-free ideals behave well in various ways. E.g.:

(Whitney-approximation for ideals) Let
$$I \subset C^{\infty}(\mathbb{R}^n)$$
 be ghost-free, denote $Z := V(I) \subset \mathbb{R}^n$. Then $C^{\infty}(\mathbb{R}^n) = C^{\omega}(\mathbb{R}^n \setminus Z) \cap C^{\infty}(\mathbb{R}^n) + I$.

"Transfinite Borel lemma". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset l_1 \supset l_2 \supset \cdots$, such that $V(l_{\bullet}) = o \in \mathbb{R}^n$.

- 1. Then $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}$.
- 2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \twoheadrightarrow \widehat{C^{\infty}(\mathbb{R}^n)}$.

Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$ for some $\tau \in C^{\in}(\mathbb{R}^n)$. **Def.** $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.

Example: the ghost ideal $I(\mathbb{R}^n, o) = \{\text{all the functions with zero germs at } o\}$. Here $V(I(\mathbb{R}^n, o)) = o \in \mathbb{R}^n$. But for each $\tau \in I(\mathbb{R}^n, o)$ have: $V(\tau) \supset Ball_{\varepsilon_n}(o)$

- Any finitely-generated ideal is ghost-free. For each $Z \subset \mathbb{R}^n$ the ideal $I(Z)^{\infty}$ is ghost-free.
- Ideals in $C^{\infty}(\mathcal{U})$ can be complicated. "Many ghosts" can appear, and "in various ways".
- Ghost-free ideals behave well in various ways. E.g.:

(Whitney-approximation for ideals) Let $I \subset C^{\infty}(\mathbb{R}^n)$ be ghost-free, denote $Z := V(I) \subset \mathbb{R}^n$. Then

$$C^{\infty}(\mathbb{R}^n) = C^{\omega}(\mathbb{R}^n \setminus Z) \cap C^{\infty}(\mathbb{R}^n) + I.$$

In words: every f is presentable as $f_{an}+f_I$, where $f_{an}\in C^\omega(\mathbb{R}^n\setminus Z)\cap C^\infty(\mathbb{R}^n)$ and $f_I\in I$.

Ideals with one-point zero locus, $V(I_{\bullet}) = o \in \mathbb{R}^n$. (A baby case) "Transfinite Borel lemma". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$.

1. Then $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}$.

2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \twoheadrightarrow C^{\infty}(\mathbb{R}^n)$. Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$ for some $\tau \in C^{\epsilon}(\mathbb{R}^n)$. **Def.** $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.

Example: the ghost ideal $I(\mathbb{R}^n, o) = \{\text{all the functions with zero germs at } o\}.$ Here $V(I(\mathbb{R}^n, o)) = o \in \mathbb{R}^n$. But for each $\tau \in I(\mathbb{R}^n, o)$ have: $V(\tau) \supset Ball_{\epsilon_{-}}(o)$

- Any finitely-generated ideal is ghost-free. For each $Z \subset \mathbb{R}^n$ the ideal $I(Z)^{\infty}$ is ghost-free.
- Ideals in $C^{\infty}(\mathcal{U})$ can be complicated. "Many ghosts" can appear, and "in various ways".
- Ghost-free ideals behave well in various ways. E.g.: (Whitney-approximation for ideals) Let $I \subset C^{\infty}(\mathbb{R}^n)$ be ghost-free, denote $Z := V(I) \subset \mathbb{R}^n$. Then

$$C^{\infty}(\mathbb{R}^n) = C^{\omega}(\mathbb{R}^n \setminus Z) \cap C^{\infty}(\mathbb{R}^n) + I.$$

In words: every f is presentable as $f_{an} + f_I$, where $f_{an} \in C^{\omega}(\mathbb{R}^n \setminus Z) \cap C^{\infty}(\mathbb{R}^n)$ and $f_I \in I$.

The proof of "Transfinite Borel lemma" is not "immediate Borel". [Need "derivatives of transfinite orders".]

Ideals with one-point zero locus, $V(I_{\bullet}) = o \in \mathbb{R}^n$. (A baby case) "Transfinite Borel lemma". Take a filtration $C^{\infty}(\mathbb{R}^n) \supset I_1 \supset I_2 \supset \cdots$, such that $V(I_{\bullet}) = o \in \mathbb{R}^n$.

1. Then $C^{\infty}(\mathbb{R}^n) \to \widehat{C^{\infty}(\mathbb{R}^n)}$.

2. Moreover, if $I_{\infty} := \cap I_{\bullet}$ is "ghost-free", then $C^{\omega}(\mathbb{R}^n \setminus o) \cap C^{\infty}(\mathbb{R}^n) \twoheadrightarrow C^{\infty}(\mathbb{R}^n)$. Recall Whitney theorem on zeros: Every closed set is presentable as $V(\tau) \subset \mathbb{R}^n$ for some $\tau \in C^{\epsilon}(\mathbb{R}^n)$. **Def.** $I \subset C^{\infty}(\mathbb{R}^n)$ is called "ghost-free" if $V(I) = V(\tau) \subset \mathbb{R}^n$ for some $\tau \in I$.

Example: the ghost ideal $I(\mathbb{R}^n, o) = \{\text{all the functions with zero germs at } o\}.$ Here $V(I(\mathbb{R}^n, o)) = o \in \mathbb{R}^n$. But for each $\tau \in I(\mathbb{R}^n, o)$ have: $V(\tau) \supset Ball_{\epsilon_{-}}(o)$

- Any finitely-generated ideal is ghost-free. For each $Z \subset \mathbb{R}^n$ the ideal $I(Z)^{\infty}$ is ghost-free.
- Ideals in $C^{\infty}(\mathcal{U})$ can be complicated. "Many ghosts" can appear, and "in various ways".
- Ghost-free ideals behave well in various ways. E.g.: (Whitney-approximation for ideals) Let $I \subset C^{\infty}(\mathbb{R}^n)$ be ghost-free, denote $Z := V(I) \subset \mathbb{R}^n$. Then

$$C^{\infty}(\mathbb{R}^n) = C^{\omega}(\mathbb{R}^n \setminus Z) \cap C^{\infty}(\mathbb{R}^n) + I.$$

In words: every f is presentable as $f_{an} + f_I$, where $f_{an} \in C^{\omega}(\mathbb{R}^n \setminus Z) \cap C^{\infty}(\mathbb{R}^n)$ and $f_I \in I$.

The proof of "Transfinite Borel lemma" is not "immediate Borel". [Need "derivatives of transfinite orders".]

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$.

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$.

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion: $C^{\infty}(\mathcal{U})/I(Z)$

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion: $C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2$ $\int_{jet_0,z}^{jet_0,z} \int_{jet_1,z}^{jet_1,z}$

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion: $C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \underbrace{jet_{\mathbf{0},\mathbf{Z}}}_{jet_{\mathbf{1},\mathbf{Z}}}$

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion: $C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet}$

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion: $C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\substack{j \in t_0, z \ j \in t_1, z}} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}$$
.

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}$$
.

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$. In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution $mod\ I(Z)^{\infty}$.

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution $mod\ I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}$$
.

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and

Then there exists a C^{ω}/C^{∞} -solution $mod\ I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and

Then there exists a C^{ω}/C^{∞} -solution $mod\ I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1.

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}$$
.

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and

Then there exists a C^{ω}/C^{∞} -solution $mod\ I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X \setminus Z_0, Z_0 \setminus Z_1, Z_1 \setminus Z_2, \ldots$

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}$$
.

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \rightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. mod I(Z)), and also $mod I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution mod $I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X \setminus Z_0, Z_0 \setminus Z_1, Z_1 \setminus Z_2, \ldots$ Then the relevant ideals are $I(Z_0)^{p_0}$

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \rightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution mod $I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X \setminus Z_0, Z_0 \setminus Z_1, Z_1 \setminus Z_2, \ldots$ Then the relevant ideals are $I(Z_0)^{p_0} \cdot I(Z_1)^{p_1}$

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution $mod\ I(Z)^{\infty}$.

The Call and the C

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X \setminus Z_0$, $Z_0 \setminus Z_1$, $Z_1 \setminus Z_2$, ... Then the relevant ideals are $I(Z_0)^{p_0} \cdot I(Z_1)^{p_1} \cdot I(Z_2)^{p_2} \cdots$

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. mod I(Z)), and also $mod I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution mod $I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X \setminus Z_0, Z_0 \setminus Z_1, Z_1 \setminus Z_2, \ldots$ Then the relevant ideals are $I(Z_0)^{p_0} \cdot I(Z_1)^{p_1} \cdot I(Z_2)^{p_2} \cdots$ or $I(Z_0)^{p_0}$

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. mod I(Z)), and also $mod I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution mod $I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X \setminus Z_0, Z_0 \setminus Z_1, Z_1 \setminus Z_2, \ldots$ Then the relevant ideals are $I(Z_0)^{p_0} \cdot I(Z_1)^{p_1} \cdot I(Z_2)^{p_2} \cdots$ or $I(Z_0)^{p_0} \cap I(Z_1)^{p_1}$

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \bar{C}^{\infty}(\bar{\mathcal{U}})$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and

Then there exists a C^{ω}/C^{∞} -solution $mod\ I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X \setminus Z_0$, $Z_0 \setminus Z_1$, $Z_1 \setminus Z_2$, ... Then the relevant ideals are $I(Z_0)^{p_0} \cdot I(Z_1)^{p_1} \cdot I(Z_2)^{p_2} \cdot \cdots$ or $I(Z_0)^{p_0} \cap I(Z_1)^{p_1} \cap I(Z_2)^{p_2}$

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow C^{\infty}(\mathcal{U})$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution mod $I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X \setminus Z_0, Z_0 \setminus Z_1, Z_1 \setminus Z_2, \ldots$ Then the relevant ideals are $I(Z_0)^{p_0} \cdot I(Z_1)^{p_1} \cdot I(Z_2)^{p_2} \cdots$ or $I(Z_0)^{p_0} \cap I(Z_1)^{p_1} \cap I(Z_2)^{p_2} \cap \cdots$

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \rightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution mod $I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X \setminus Z_0, Z_0 \setminus Z_1, Z_1 \setminus Z_2, \ldots$ Then the relevant ideals are $I(Z_0)^{p_0} \cdot I(Z_1)^{p_1} \cdot I(Z_2)^{p_2} \cdots$ or $I(Z_0)^{p_0} \cap I(Z_1)^{p_1} \cap I(Z_2)^{p_2} \cap \cdots$

These filtrations are not equivalent to $I(Z)^{\bullet}$.

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \rightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution mod $I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X \setminus Z_0, Z_0 \setminus Z_1, Z_1 \setminus Z_2, \ldots$ Then the relevant ideals are $I(Z_0)^{p_0} \cdot I(Z_1)^{p_1} \cdot I(Z_2)^{p_2} \cdots$ or $I(Z_0)^{p_0} \cap I(Z_1)^{p_1} \cap I(Z_2)^{p_2} \cap \cdots$

These filtrations are not equivalent to $I(Z)^{\bullet}$.

2.

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution $mod\ I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X\setminus Z_0, Z_0\setminus Z_1, Z_1\setminus Z_2, \ldots$ Then the relevant ideals are $I(Z_0)^{p_0}\cdot I(Z_1)^{p_1}\cdot I(Z_2)^{p_2}\cdots$ or $I(Z_0)^{p_0}\cap I(Z_1)^{p_1}\cap I(Z_2)^{p_2}\cap\cdots$

These filtrations are not equivalent to $I(Z)^{\bullet}$.

2. Suppose at first iteration you resolve the problem over $Z_1 \subset \mathcal{U}$,

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution $mod\ I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X\setminus Z_0, Z_0\setminus Z_1, Z_1\setminus Z_2, \ldots$ Then the relevant ideals are $I(Z_0)^{p_0}\cdot I(Z_1)^{p_1}\cdot I(Z_2)^{p_2}\cdots$ or $I(Z_0)^{p_0}\cap I(Z_1)^{p_1}\cap I(Z_2)^{p_2}\cap\cdots$

These filtrations are not equivalent to $I(Z)^{\bullet}$.

2. Suppose at first iteration you resolve the problem over $Z_1 \subset \mathcal{U}$, then over $Z_1 \subset Z_2 \subset \mathcal{U}$,

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution $mod\ I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

This Corollary is infinediate from whitney extension theorem

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X\setminus Z_0, Z_0\setminus Z_1, Z_1\setminus Z_2, \ldots$ Then the relevant ideals are $I(Z_0)^{p_0}\cdot I(Z_1)^{p_1}\cdot I(Z_2)^{p_2}\cdots$ or $I(Z_0)^{p_0}\cap I(Z_1)^{p_1}\cap I(Z_2)^{p_2}\cap\cdots$

These filtrations are not equivalent to $I(Z)^{\bullet}$.

2. Suppose at first iteration you resolve the problem over $Z_1 \subset \mathcal{U}$, then over $Z_1 \subset Z_2 \subset \mathcal{U}$, and so on.

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution $mod\ I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X\setminus Z_0, Z_0\setminus Z_1, Z_1\setminus Z_2, \ldots$ Then the relevant ideals are $I(Z_0)^{p_0}\cdot I(Z_1)^{p_1}\cdot I(Z_2)^{p_2}\cdots$ or $I(Z_0)^{p_0}\cap I(Z_1)^{p_1}\cap I(Z_2)^{p_2}\cap\cdots$

These filtrations are not equivalent to $I(Z)^{\bullet}$.

2. Suppose at first iteration you resolve the problem over $Z_1 \subset \mathcal{U}$, then over $Z_1 \subset Z_2 \subset \mathcal{U}$, and so on.

Then the relevant filtration, $\emph{I}_1 \supset \emph{I}_2 \supset \cdots$,

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution $mod\ I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X\setminus Z_0, Z_0\setminus Z_1, Z_1\setminus Z_2, \ldots$ Then the relevant ideals are $I(Z_0)^{p_0}\cdot I(Z_1)^{p_1}\cdot I(Z_2)^{p_2}\cdots$ or $I(Z_0)^{p_0}\cap I(Z_1)^{p_1}\cap I(Z_2)^{p_2}\cap\cdots$

These filtrations are not equivalent to $I(Z)^{\bullet}$.

2. Suppose at first iteration you resolve the problem over $Z_1 \subset \mathcal{U}$, then over $Z_1 \subset Z_2 \subset \mathcal{U}$, and so on.

Then the relevant filtration, $I_1 \supset I_2 \supset \cdots$, satisfies: $V(I_1) = Z_1, \ V(I_2) = Z_2, \ldots$

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution $mod\ I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X \setminus Z_0$, $Z_0 \setminus Z_1$, $Z_1 \setminus Z_2$, ... Then the relevant ideals are $I(Z_0)^{p_0} \cdot I(Z_1)^{p_1} \cdot I(Z_2)^{p_2} \cdot \cdots$ or $I(Z_0)^{p_0} \cap I(Z_1)^{p_1} \cap I(Z_2)^{p_2} \cap \cdots$

These filtrations are not equivalent to $I(Z)^{\bullet}$.

2. Suppose at first iteration you resolve the problem over $Z_1 \subset \mathcal{U}$, then over $Z_1 \subset Z_2 \subset \mathcal{U}$, and so on.

Then the relevant filtration, $I_1 \supset I_2 \supset \cdots$, satisfies: $V(I_1) = Z_1, \ V(I_2) = Z_2, \ldots$

These filtrations are not equivalent to $I(Z)^{\bullet}$.

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion:
$$C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution $mod\ I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X\setminus Z_0, Z_0\setminus Z_1, Z_1\setminus Z_2, \ldots$ Then the relevant ideals are $I(Z_0)^{p_0}\cdot I(Z_1)^{p_1}\cdot I(Z_2)^{p_2}\cdots$ or $I(Z_0)^{p_0}\cap I(Z_1)^{p_1}\cap I(Z_2)^{p_2}\cap\cdots$

These filtrations are not equivalent to $I(Z)^{\bullet}$.

2. Suppose at first iteration you resolve the problem over $Z_1 \subset \mathcal{U}$, then over $Z_1 \subset Z_2 \subset \mathcal{U}$, and so on.

Then the relevant filtration, $I_1 \supset I_2 \supset \cdots$, satisfies: $V(I_1) = Z_1, V(I_2) = Z_2, \ldots$

These filtrations are not equivalent to $I(Z)^{\bullet}$. (Even the zero locus varies.)

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion: $C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and

Then there exists a C^{ω}/C^{∞} -solution $mod\ I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X \setminus Z_0$, $Z_0 \setminus Z_1$, $Z_1 \setminus Z_2$, ... Then the relevant ideals are $I(Z_0)^{p_0} \cdot I(Z_1)^{p_1} \cdot I(Z_2)^{p_2} \cdot \cdots$ or $I(Z_0)^{p_0} \cap I(Z_1)^{p_1} \cap I(Z_2)^{p_2} \cap \cdots$

These filtrations are not equivalent to $I(Z)^{\bullet}$.

2. Suppose at first iteration you resolve the problem over $Z_1\subset \mathcal{U},$ then over $Z_1\subset Z_2\subset \mathcal{U},$ and so on.

Then the relevant filtration, $I_1 \supset I_2 \supset \cdots$, satisfies: $V(I_1) = Z_1, \ V(I_2) = Z_2, \ldots$

These filtrations are not equivalent to $I(Z)^{\bullet}$. (Even the zero locus varies.)

Goal:

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion: $C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution $mod\ I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X\setminus Z_0, Z_0\setminus Z_1, Z_1\setminus Z_2, \ldots$ Then the relevant ideals are $I(Z_0)^{p_0}\cdot I(Z_1)^{p_1}\cdot I(Z_2)^{p_2}\cdots$ or $I(Z_0)^{p_0}\cap I(Z_1)^{p_1}\cap I(Z_2)^{p_2}\cap\cdots$ These filtrations are not equivalent to $I(Z)^{\bullet}$.

2. Suppose at first iteration you resolve the problem over $Z_1 \subset \mathcal{U}$, then over $Z_1 \subset Z_2 \subset \mathcal{U}$, and so on. Then the relevant filtration, $I_1 \supset I_2 \supset \cdots$, satisfies: $V(I_1) = Z_1$, $V(I_2) = Z_2$, ...

These filtrations are not equivalent to $I(Z)^{\bullet}$. (Even the zero locus varies.)

Goal: Establish the surjectivity $C^{\infty}(...) \rightarrow \widehat{C^{\infty}(...)}$ for arbitrary filtrations.

Let $Z_{closed} \subset \mathcal{U}_{open} \subseteq \mathbb{R}^n$. Take $I(Z) \subset C^{\infty}(\mathcal{U})$. Get the filtration $C^{\infty}(\mathcal{U}) \supset I(Z) \supset I(Z)^2 \supset \cdots$.

Take the completion: $C^{\infty}(\mathcal{U})/I(Z) \leftarrow C^{\infty}(\mathcal{U})/I(Z)^2 \leftarrow \cdots \leftarrow \lim_{\leftarrow} C^{\infty}(\mathcal{U})/I(Z)^{\bullet} =: \widehat{C^{\infty}(\mathcal{U})}.$

Corollary (of Whitney extension theorem): $C^{\omega}(\mathcal{U} \setminus Z) \cap C^{\infty}(\mathcal{U}) \twoheadrightarrow \widehat{C^{\infty}(\mathcal{U})}$.

In words: suppose some problem is resolvable on Z (i.e. $mod\ I(Z)$), and also $mod\ I(Z)^2$, and Then there exists a C^{ω}/C^{∞} -solution $mod\ I(Z)^{\infty}$.

This Corollary is immediate from Whitney extension theorem.

In various applications we meet ideals not of type $I(Z)^{\bullet}$.

Example 1. Let X be \mathbb{R}/\mathbb{C} -analytic, with some stratification $X\setminus Z_0, Z_0\setminus Z_1, Z_1\setminus Z_2, \ldots$ Then the relevant ideals are $I(Z_0)^{p_0}\cdot I(Z_1)^{p_1}\cdot I(Z_2)^{p_2}\cdots$ or $I(Z_0)^{p_0}\cap I(Z_1)^{p_1}\cap I(Z_2)^{p_2}\cap\cdots$ These filtrations are not equivalent to $I(Z)^{\bullet}$.

2. Suppose at first iteration you resolve the problem over $Z_1 \subset \mathcal{U}$, then over $Z_1 \subset Z_2 \subset \mathcal{U}$, and so on. Then the relevant filtration, $I_1 \supset I_2 \supset \cdots$, satisfies: $V(I_1) = Z_1$, $V(I_2) = Z_2$, ...

These filtrations are not equivalent to $I(Z)^{\bullet}$. (Even the zero locus varies.)

Goal: Establish the surjectivity $C^{\infty}(...) \rightarrow \widehat{C^{\infty}(...)}$ for arbitrary filtrations.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Take the "eventual ideal", $I_{\infty} := \cap_{\bullet} I_{\bullet}$.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$. Take the "eventual ideal", $I_{\infty} := \cap_{\bullet} I_{\bullet}$. Denote $Z := V(I_{\infty}) \subseteq \overline{\mathcal{U}}$.

Theorem 1.

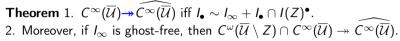
Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$. Take the "eventual ideal", $I_{\infty} := \cap_{\bullet} I_{\bullet}$. Denote $Z := V(I_{\infty}) \subseteq \overline{\mathcal{U}}$.

Theorem 1. $C^{\infty}(\overline{\mathcal{U}}) \twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$ iff $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Take the "eventual ideal", $I_{\infty} := \cap_{\bullet} I_{\bullet}$. Denote $Z := V(I_{\infty}) \subseteq \overline{\mathcal{U}}$.

Theorem 1.
$$C^{\infty}(\overline{\mathcal{U}}) woheadrightarrow C^{\infty}(\overline{\mathcal{U}})$$
 iff $I_{ullet}\sim I_{\infty}+I_{ullet}\cap I(Z)^{ullet}$.



Let $\mathcal{U}\subset\mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^\infty(\overline{\mathcal{U}})\supset I_1\supset I_2\supset I_3\supset\cdots$.

Take the "eventual ideal", $I_{\infty}:=\cap_{ullet}I_{ullet}$. Denote $Z:=V(I_{\infty})\subseteq\overline{\mathcal{U}}.$

Theorem 1. $C^{\infty}(\overline{\mathcal{U}}) \twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$ iff $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$.

2. Moreover, if I_{∞} is ghost-free, then $C^{\omega}(\overline{\mathcal{U}}\setminus Z)\cap C^{\infty}(\overline{\mathcal{U}})\twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$.

Roughly: if a problem is resolvable $mod\ I_1,\ mod\ I_2,\ \ldots$, then it is " C^{ω}/C^{∞} -resolvable $mod\ I_{\infty}$."

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Take the "eventual ideal", $I_{\infty}:=\cap_{\bullet}I_{\bullet}$. Denote $Z:=V(I_{\infty})\subseteq\overline{\mathcal{U}}$.

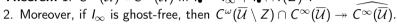
- Theorem 1. $C^{\infty}(\overline{\mathcal{U}}) \twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$ iff $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$.
- 2. Moreover, if I_{∞} is ghost-free, then $C^{\omega}(\overline{\mathcal{U}}\setminus Z)\cap C^{\infty}(\overline{\mathcal{U}})\twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$.

Roughly: if a problem is resolvable $mod\ I_1,\ mod\ I_2,\ \ldots$, then it is " C^{ω}/C^{∞} -resolvable $mod\ I_{\infty}$." What means $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$?

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Take the "eventual ideal", $I_{\infty} := \cap_{\bullet} I_{\bullet}$. Denote $Z := V(I_{\infty}) \subseteq \overline{\mathcal{U}}$.

Theorem 1.
$$C^{\infty}(\overline{\mathcal{U}}) \twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$$
 iff $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$.



Roughly: if a problem is resolvable mod I_1 , mod I_2 , ..., then it is " C^{ω}/C^{∞} -resolvable mod I_{∞} ."

- What means $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$?
 - $V(I_{\bullet})$ stabilizes, i.e. $V(I_i) = V(I_{\infty})$ for $i \gg 1$.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Take the "eventual ideal", $I_{\infty} := \cap_{\bullet} I_{\bullet}$. Denote $Z := V(I_{\infty}) \subseteq \overline{\mathcal{U}}$.

- Theorem 1. $C^{\infty}(\overline{\mathcal{U}}) \twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$ iff $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$.
- 2. Moreover, if I_{∞} is ghost-free, then $C^{\omega}(\overline{\mathcal{U}}\setminus Z)\cap C^{\infty}(\overline{\mathcal{U}})\twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$.

Roughly: if a problem is resolvable mod I_1 , mod I_2 , ..., then it is " C^{ω}/C^{∞} -resolvable mod I_{∞} ." What means $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$?

- $V(I_{\bullet})$ stabilizes, i.e. $V(I_i) = V(I_{\infty})$ for $i \gg 1$.
- Denote $V_2(I) := \{ p \in \overline{\mathcal{U}} | I \subseteq \mathfrak{m}_n^2 \},$

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Take the "eventual ideal", $I_{\infty} := \cap_{\bullet} I_{\bullet}$. Denote $Z := V(I_{\infty}) \subseteq \overline{\mathcal{U}}$.

Theorem 1.
$$C^{\infty}(\overline{\mathcal{U}}) \twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$$
 iff $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$.

2. Moreover, if I_{∞} is ghost-free, then $C^{\omega}(\overline{\mathcal{U}}\setminus Z)\cap C^{\infty}(\overline{\mathcal{U}})\twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$.

Roughly: if a problem is resolvable $mod\ l_1,\ mod\ l_2,\ \ldots$, then it is " C^{ω}/C^{∞} -resolvable $mod\ l_{\infty}$."

What means $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$?

• $V(I_{\bullet})$ stabilizes, i.e. $V(I_{i}) = V(I_{\infty})$ for $i \gg 1$.

- $V(I_{\bullet})$ stabilizes, i.e. $V(I_{j}) = V(I_{\infty})$ for $j \gg 1$
- Denote $V_2(I) := \{ p \in \widetilde{\mathcal{U}} | I \subseteq \mathfrak{m}_p^2 \}$, the locus of points where all generators of I are of $ord_p \geq 2$.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Take the "eventual ideal", $I_{\infty} := \cap_{\bullet} I_{\bullet}$. Denote $Z := V(I_{\infty}) \subseteq \overline{\mathcal{U}}$.

Theorem 1.
$$C^{\infty}(\overline{\mathcal{U}}) \twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$$
 iff $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$.

2. Moreover, if I_{∞} is ghost-free, then $C^{\widetilde{\omega}}(\overline{\mathcal{U}}\setminus Z)\cap C^{\infty}(\overline{\mathcal{U}})\twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$.

Roughly: if a problem is resolvable $mod\ l_1,\ mod\ l_2,\ \ldots$, then it is " C^{ω}/C^{∞} -resolvable $mod\ l_{\infty}$."

What means $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$?

- $V(I_{\bullet})$ stabilizes, i.e. $V(I_j) = V(I_{\infty})$ for $j \gg 1$.
- Denote $V_2(I) := \{ p \in \overline{\mathcal{U}} | I \subseteq \mathfrak{m}_p^2 \}$, the locus of points where all generators of I are of $ord_p \geq 2$. Then $V_2(I_{\bullet})$ stabilize, i.e. $V_2(I_i) = V_2(I_{\infty})$ for $i \gg 1$.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Take the "eventual ideal", $I_{\infty} := \cap_{\bullet} I_{\bullet}$. Denote $Z := V(I_{\infty}) \subseteq \overline{\mathcal{U}}$.

Theorem 1.
$$C^{\infty}(\overline{\mathcal{U}}) \twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$$
 iff $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$.

2. Moreover, if I_{∞} is ghost-free, then $C^{\widetilde{\omega}}(\overline{\mathcal{U}}\setminus Z)\cap C^{\infty}(\overline{\mathcal{U}})\twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$.

Roughly: if a problem is resolvable $mod\ l_1,\ mod\ l_2,\ \ldots$, then it is " C^{ω}/C^{∞} -resolvable $mod\ l_{\infty}$."

What means $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$?

- $V(I_{\bullet})$ stabilizes, i.e. $V(I_j) = V(I_{\infty})$ for $j \gg 1$.
- Denote $V_2(I) := \{ p \in \overline{\mathcal{U}} | I \subseteq \mathfrak{m}_p^2 \}$, the locus of points where all generators of I are of $ord_p \geq 2$. Then $V_2(I_{\bullet})$ stabilize, i.e. $V_2(I_j) = V_2(I_{\infty})$ for $j \gg 1$.
- And so on. For each d: $V_d(I_{\bullet})$ stabilize.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Take the "eventual ideal", $I_{\infty} := \cap_{\bullet} I_{\bullet}$. Denote $Z := V(I_{\infty}) \subseteq \overline{\mathcal{U}}$.

Theorem 1.
$$C^{\infty}(\overline{\mathcal{U}}) \twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$$
 iff $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$.

2. Moreover, if I_{∞} is ghost-free, then $C^{\widetilde{\omega}}(\overline{\mathcal{U}}\setminus Z)\cap C^{\infty}(\overline{\mathcal{U}})\twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$.

Roughly: if a problem is resolvable $mod\ l_1,\ mod\ l_2,\ \ldots$, then it is " C^{ω}/C^{∞} -resolvable $mod\ l_{\infty}$."

What means $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$?

- $V(I_{\bullet})$ stabilizes, i.e. $V(I_j) = V(I_{\infty})$ for $j \gg 1$.
- Denote $V_2(I) := \{ p \in \overline{\mathcal{U}} | I \subseteq \mathfrak{m}_p^2 \}$, the locus of points where all generators of I are of $ord_p \geq 2$. Then $V_2(I_{\bullet})$ stabilize, i.e. $V_2(I_i) = V_2(I_{\infty})$ for $i \gg 1$.
- And so on. For each d: $V_d(I_{\bullet})$ stabilize.
- And a bit more.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Take the "eventual ideal", $I_{\infty} := \cap_{\bullet} I_{\bullet}$. Denote $Z := V(I_{\infty}) \subseteq \overline{\mathcal{U}}$.

Theorem 1.
$$C^{\infty}(\overline{\mathcal{U}}) \twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$$
 iff $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$.

2. Moreover, if I_{∞} is ghost-free, then $C^{\widetilde{\omega}}(\overline{\mathcal{U}}\setminus Z)\cap C^{\infty}(\overline{\mathcal{U}})\twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$.

Roughly: if a problem is resolvable $mod\ l_1,\ mod\ l_2,\ \ldots$, then it is " C^{ω}/C^{∞} -resolvable $mod\ l_{\infty}$."

What means $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$?

- $V(I_{\bullet})$ stabilizes, i.e. $V(I_j) = V(I_{\infty})$ for $j \gg 1$.
- Denote $V_2(I) := \{ p \in \overline{\mathcal{U}} | I \subseteq \mathfrak{m}_p^2 \}$, the locus of points where all generators of I are of $ord_p \geq 2$. Then $V_2(I_{\bullet})$ stabilize, i.e. $V_2(I_i) = V_2(I_{\infty})$ for $i \gg 1$.
- And so on. For each d: $V_d(I_{\bullet})$ stabilize.
- And a bit more.

Remarks. 1.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Take the "eventual ideal", $I_{\infty} := \cap_{\bullet} I_{\bullet}$. Denote $Z := V(I_{\infty}) \subseteq \overline{\mathcal{U}}$.

- Theorem 1. $C^{\infty}(\overline{\mathcal{U}}) \twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$ iff $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$.
- 2. Moreover, if I_{∞} is ghost-free, then $C^{\omega}(\overline{\mathcal{U}}\setminus Z)\cap C^{\infty}(\overline{\mathcal{U}})\twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$.

Roughly: if a problem is resolvable $mod\ l_1,\ mod\ l_2,\ \ldots$, then it is " C^{ω}/C^{∞} -resolvable $mod\ l_{\infty}$."

- What means $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$?
 - $V(I_{\bullet})$ stabilizes, i.e. $V(I_j) = V(I_{\infty})$ for $j \gg 1$.
 - Denote $V_2(I) := \{ p \in \overline{\mathcal{U}} | I \subseteq \mathfrak{m}_p^2 \}$, the locus of points where all generators of I are of $ord_p \geq 2$. Then $V_2(I_{\bullet})$ stabilize, i.e. $V_2(I_i) = V_2(I_{\infty})$ for $i \gg 1$.
 - And so on. For each d: $V_d(I_{\bullet})$ stabilize.
 - And so on. For each $a: V_d(I_{\bullet})$ stabilize. • And a bit more.

Remarks. 1. The proof (a mixture of Algebra and Analysis) does not follow from Whitney extension theorem.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Take the "eventual ideal", $I_{\infty} := \cap_{\bullet} I_{\bullet}$. Denote $Z := V(I_{\infty}) \subseteq \overline{\mathcal{U}}$.

Theorem 1.
$$C^{\infty}(\overline{\mathcal{U}}) \twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$$
 iff $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$.

2. Moreover, if I_{∞} is ghost-free, then $C^{\omega}(\overline{\mathcal{U}}\setminus Z)\cap C^{\infty}(\overline{\mathcal{U}})\twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$.

Roughly: if a problem is resolvable mod I_1 , mod I_2 , ..., then it is " C^{ω}/C^{∞} -resolvable mod I_{∞} ." What means $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$?

- $V(I_{\bullet})$ stabilizes, i.e. $V(I_i) = V(I_{\infty})$ for $i \gg 1$.

 - Denote $V_2(I) := \{ p \in \overline{\mathcal{U}} | I \subseteq \mathfrak{m}_p^2 \}$, the locus of points where all generators of I are of $ord_p \geq 2$. Then $V_2(I_{\bullet})$ stabilize, i.e. $V_2(I_i) = V_2(I_{\infty})$ for $i \gg 1$.
 - And so on. For each $d: V_d(I_{\bullet})$ stabilize.

 - And a bit more.

Remarks. 1. The proof (a mixture of Algebra and Analysis) does not follow from Whitney extension theorem.

2. This version is for $C^{\infty}(\overline{\mathcal{U}})$.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Take the "eventual ideal", $I_{\infty} := \cap_{\bullet} I_{\bullet}$. Denote $Z := V(I_{\infty}) \subseteq \overline{\mathcal{U}}$.

Theorem 1.
$$C^{\infty}(\overline{\mathcal{U}}) \twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$$
 iff $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$.

2. Moreover, if I_{∞} is ghost-free, then $C^{\widetilde{\omega}}(\overline{\mathcal{U}}\setminus Z)\cap C^{\infty}(\overline{\mathcal{U}})\twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$.

Roughly: if a problem is resolvable $mod\ l_1,\ mod\ l_2,\ \ldots$, then it is " C^{ω}/C^{∞} -resolvable $mod\ l_{\infty}$."

What means $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$?

- $V(I_{\bullet})$ stabilizes, i.e. $V(I_j) = V(I_{\infty})$ for $j \gg 1$.
- Denote $V_2(I) := \{ p \in \overline{\mathcal{U}} | I \subseteq \mathfrak{m}_p^2 \}$, the locus of points where all generators of I are of $ord_p \geq 2$. Then $V_2(I_{\bullet})$ stabilize, i.e. $V_2(I_i) = V_2(I_{\infty})$ for $i \gg 1$.
- And so on. For each d: $V_d(I_{\bullet})$ stabilize.
- And a bit more.

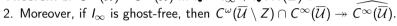
Remarks. 1.The proof (a mixture of Algebra and Analysis) does not follow from Whitney extension theorem.

2. This version is for $C^{\infty}(\overline{\mathcal{U}})$. There are versions for $C^{\infty}(\mathcal{U})$, $C^{\infty}(\mathbb{R}^n, o)$, $C^{\infty}(\mathbb{R}^n, Z)$, $C^{\infty}(\cdots)/J$.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Take the "eventual ideal", $I_{\infty}:=\cap_{\bullet}I_{\bullet}$. Denote $Z:=V(I_{\infty})\subseteq\overline{\mathcal{U}}$.

Theorem 1.
$$C^{\infty}(\overline{\mathcal{U}}) \twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$$
 iff $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$.



Roughly: if a problem is resolvable $mod\ I_1,\ mod\ I_2,\ \ldots$, then it is " C^{ω}/C^{∞} -resolvable $mod\ I_{\infty}$." What means $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$?

- $V(I_{\bullet})$ stabilizes, i.e. $V(I_i) = V(I_{\infty})$ for $i \gg 1$.
 - Denote $V_2(I) := \{ p \in \overline{\mathcal{U}} | I \subseteq \mathfrak{m}_p^2 \}$, the locus of points where all generators of I are of $ord_p \geq 2$.
 - Then $V_2(I_{\bullet})$ stabilize, i.e. $V_2(I_i) = V_2(I_{\infty})$ for $j \gg 1$.
 - And so on. For each d: $V_d(I_{\bullet})$ stabilize.
 - And a bit more.

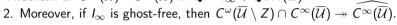
Remarks. 1. The proof (a mixture of Algebra and Analysis) does not follow from Whitney extension theorem.

- 2. This version is for $C^{\infty}(\overline{\mathcal{U}})$. There are versions for $C^{\infty}(\mathcal{U})$, $C^{\infty}(\mathbb{R}^n, o)$, $C^{\infty}(\mathbb{R}^n, Z)$, $C^{\infty}(\dots)/J$.
- 3. So we get: $0 \to I_{\infty} \to C^{\infty}(\mathcal{U}) \to \widehat{C}^{\infty}(\widehat{\mathcal{U}}) \to 0$.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Take the "eventual ideal", $I_{\infty}:=\cap_{ullet}I_{ullet}$. Denote $Z:=V(I_{\infty})\subseteq\overline{\mathcal{U}}$.

Theorem 1. $C^{\infty}(\overline{\mathcal{U}}) \twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$ iff $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$.



Roughly: if a problem is resolvable $mod\ I_1,\ mod\ I_2,\ \ldots$, then it is " C^{ω}/C^{∞} -resolvable $mod\ I_{\infty}$."

What means $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$?

- $V(I_{\bullet})$ stabilizes, i.e. $V(I_i) = V(I_{\infty})$ for $i \gg 1$.
 - Denote $V_2(I) := \{ p \in \overline{\mathcal{U}} | I \subseteq \mathfrak{m}_p^2 \}$, the locus of points where all generators of I are of $ord_p \geq 2$. Then $V_2(I_{\bullet})$ stabilize, i.e. $V_2(I_i) = V_2(I_{\infty})$ for $i \gg 1$.
 - And so on. For each d: $V_d(I_0)$ stabilize.
 - And so on. For each $a: V_d(I_{\bullet})$ stabilize • And a bit more.
- **Remarks.** 1. The proof (a mixture of Algebra and Analysis) does not follow from Whitney extension theorem.
- 2. This version is for $C^{\infty}(\overline{\mathcal{U}})$. There are versions for $C^{\infty}(\mathcal{U})$, $C^{\infty}(\mathbb{R}^n, o)$, $C^{\infty}(\mathbb{R}^n, Z)$, $C^{\infty}(\dots)/J$.
- 3. So we get: $0 \to I_{\infty} \to C^{\infty}(\mathcal{U}) \to \widehat{C^{\infty}(\mathcal{U})} \to 0$. The kernel I_{∞} is huge.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$. Take the "eventual ideal", $I_{\infty} := \cap_{\bullet} I_{\bullet}$. Denote $Z := V(I_{\infty}) \subseteq \overline{\mathcal{U}}$.

Theorem 1. $C^{\infty}(\overline{\mathcal{U}}) \rightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$ iff $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$.

2. Moreover, if I_{∞} is ghost-free, then $C^{\omega}(\overline{\mathcal{U}}\setminus Z)\cap C^{\infty}(\overline{\mathcal{U}})\twoheadrightarrow \widehat{C^{\infty}(\overline{\mathcal{U}})}$.

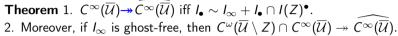
Roughly: if a problem is resolvable $mod\ I_1,\ mod\ I_2,\ \ldots$, then it is " C^{ω}/C^{∞} -resolvable $mod\ I_{\infty}$." What means $I_{\bullet} \sim I_{\infty} + I_{\bullet} \cap I(Z)^{\bullet}$?

• $V(I_{\bullet})$ stabilizes, i.e. $V(I_i) = V(I_{\infty})$ for $i \gg 1$.

- Denote $V_2(I) := \{ p \in \overline{\mathcal{U}} | I \subseteq \mathfrak{m}_p^2 \}$, the locus of points where all generators of I are of $ord_p \geq 2$.
- Then $V_2(I_{\bullet})$ stabilize, i.e. $V_2(I_i) = V_2(I_{\infty})$ for $i \gg 1$.
- And so on. For each d: $V_d(I_{\bullet})$ stabilize.
- And a bit more.
- Remarks. 1.The proof (a mixture of Algebra and Analysis) does not follow from Whitney extension theorem.
- 2. This version is for $C^{\infty}(\overline{\mathcal{U}})$. There are versions for $C^{\infty}(\mathcal{U})$, $C^{\infty}(\mathbb{R}^n, o)$, $C^{\infty}(\mathbb{R}^n, Z)$, $C^{\infty}(\cdots)/J$.
- 3. So we get: $0 \to I_{\infty} \to C^{\infty}(\mathcal{U}) \to \widehat{C^{\infty}(\mathcal{U})} \to 0$. The kernel I_{∞} is huge. We can give C^{∞} -representatives with special properties.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Take the "eventual ideal", $I_{\infty}:=\cap_{ullet}I_{ullet}$. Denote $Z:=V(I_{\infty})\subseteq\overline{\mathcal{U}}$.



Roughly: if a problem is resolvable $mod\ l_1,\ mod\ l_2,\ \ldots$, then it is " C^{ω}/C^{∞} -resolvable $mod\ l_{\infty}$."

What means $l_{\bullet} \sim l_{\infty} + l_{\bullet} \cap I(Z)^{\bullet}$?

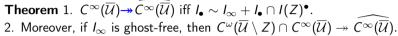
- $V(I_{\bullet})$ stabilizes, i.e. $V(I_i) = V(I_{\infty})$ for $j \gg 1$.
- Denote $V_2(I) := \{ p \in \overline{\mathcal{U}} | I \subseteq \mathfrak{m}_p^2 \}$, the locus of points where all generators of I are of $ord_p \geq 2$.
- Then $V_2(I_{\bullet})$ stabilize, i.e. $V_2(I_j) = V_2(I_{\infty})$ for $j \gg 1$.
- And so on. For each d: $V_d(I_{\bullet})$ stabilize.
- And a bit more.

Remarks. 1.The proof (a mixture of Algebra and Analysis) does not follow from Whitney extension theorem.

This version is for C[∞](\$\overline{\mu}\$). There are versions for C[∞](\$\overline{\mu}\$), C[∞](\$\mathbb{R}^n\$, o), C[∞](\$\mathbb{R}^n\$, Z), C[∞](···)/J.
 So we get: 0 → I_∞ → C[∞](\$\overline{\mu}\$) → C̄[∞](\$\overline{\mu}\$) → 0. The kernel I_∞ is huge. We can give C[∞]-representatives with special properties. E.g. fast decaying at \$\partial \Overline{\mu}\$, or satisfying certain PDE's, etc.

Let $\mathcal{U} \subset \mathbb{R}^n$ be open, bounded, so that $\overline{\mathcal{U}}$ is compact. Take a filtration $C^{\infty}(\overline{\mathcal{U}}) \supset I_1 \supset I_2 \supset I_3 \supset \cdots$.

Take the "eventual ideal", $I_{\infty}:=\cap_{ullet}I_{ullet}$. Denote $Z:=V(I_{\infty})\subseteq\overline{\mathcal{U}}$.



Roughly: if a problem is resolvable $mod\ l_1,\ mod\ l_2,\ \ldots$, then it is " C^{ω}/C^{∞} -resolvable $mod\ l_{\infty}$."

What means $l_{\bullet} \sim l_{\infty} + l_{\bullet} \cap I(Z)^{\bullet}$?

- $V(I_{\bullet})$ stabilizes, i.e. $V(I_i) = V(I_{\infty})$ for $j \gg 1$.
- Denote $V_2(I) := \{ p \in \overline{\mathcal{U}} | I \subseteq \mathfrak{m}_p^2 \}$, the locus of points where all generators of I are of $ord_p \geq 2$.
- Then $V_2(I_{\bullet})$ stabilize, i.e. $V_2(I_j) = V_2(I_{\infty})$ for $j \gg 1$.
- And so on. For each d: $V_d(I_{\bullet})$ stabilize.
- And a bit more.

Remarks. 1.The proof (a mixture of Algebra and Analysis) does not follow from Whitney extension theorem.

This version is for C[∞](\$\overline{\mu}\$). There are versions for C[∞](\$\overline{\mu}\$), C[∞](\$\mathbb{R}^n\$, o), C[∞](\$\mathbb{R}^n\$, Z), C[∞](···)/J.
 So we get: 0 → I_∞ → C[∞](\$\overline{\mu}\$) → C̄[∞](\$\overline{\mu}\$) → 0. The kernel I_∞ is huge. We can give C[∞]-representatives with special properties. E.g. fast decaying at \$\partial \Overline{\mu}\$, or satisfying certain PDE's, etc.

Szczęśliwych urodzin!

