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Let 𝑓0(𝑥, 𝑦): ℂ2, 0 → (ℂ, 0) be an isolated plane curve 

singularity.

Deformation of 𝑓0

𝑓𝑠(𝑥, 𝑦)

G.M. Greuel, C.Lossen, E.Shustin „Introduction to Singularities 

and Deformations” 2007.
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Adjacency problem: when a singularity (or a class of 
singularities) can be deformed to another one (class of 
singularities)?

Example.
𝐴2 → 𝐴1, 𝑥3 + 𝑦2  →  𝑥3 + 𝑦2 + 𝑠𝑥2

                                       𝐴2-singularity        𝐴1-singularity
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Example.
𝑋9  →  𝐸7, 

𝑥4 + 𝑦4 + 𝑎𝑥2𝑦2  →  𝑦 𝑥3 + 𝑦2  
 

Deformation:

𝑥4 + 𝑦4 + 𝑎𝑥2𝑦2 + 𝑠(𝑥 + 𝛼𝑦)3
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Easier problem: how do some numerical invariants  
change in deformations of singularities?
Example. The Milnor number 𝜇(𝑓0). Many definitions.  
One of them - intersection multiplicity    𝑖(

𝜕𝑓0

𝜕𝑥
,

𝜕𝑓0

𝜕𝑦
).

Consider a specific element of the class 𝑋9 
𝑓0 = 𝑥4 + 𝑦4,             𝜇 𝑓0 = 9 

  Fact: It is impossible to deform 𝑓0 in such a way that
𝜇 𝑓𝑠 = 8 for 𝑠 ≠ 0.

There exist deformations for which 𝜇 𝑓𝑠 = 7 for 𝑠 ≠ 0:
𝑓𝑠 = 𝑥4 + (𝑦2 + 𝑠𝑥)2



Definition of the jump

In general for similar singularities of the type
𝑓0 = 𝑥𝑛 + 𝑦𝑛,          𝜇 𝑓0 = (𝑛 − 1)2 

we can only get deformations (𝑓𝑠) for which maximally
𝜇 𝑓𝑠 = (𝑛 − 1)2−[

𝑛

2
]   for  𝑠 ≠ 0
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𝑛
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]   for  𝑠 ≠ 0

Definition. The jump (of the Milnor numbers) of  𝑓0

𝜆 𝑓0 : = min( 𝜇 𝑓0 − 𝜇 𝑓𝑠 ) ∈ ℕ
over all deformations (𝑓𝑠) of 𝑓0 for which 𝜇 𝑓0 − 𝜇 𝑓𝑠 ≠ 0.

Example. 𝜆 𝑥𝑛 + 𝑦𝑛 = [
𝑛

2
] .
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Definition of the jump

Problem. Give a formula for 𝜆 𝑓0 .
More general problem.
Problem (A’Campo). Compute the sequence of all 
possible Milnor numbers in deformations of  𝑓0.

ℳ 𝑓0 = (𝜇0 𝑓0 , 𝜇1 𝑓0 , … , 𝜇𝑘 𝑓0 )

𝜇 𝑓0 = 𝜇0 𝑓0 > 𝜇1 𝑓0 > ⋯ > 𝜇𝑘 𝑓0 = 0



Definition of the jump

Fact. 𝜆 𝑓0  is not a topological invariant.
Example. The class 𝑊1,0: 𝑥4 + 𝑦6 + 𝑎 + 𝑏𝑦 𝑥2𝑦3.

All singularities 𝑓𝑎,𝑏 are topologically equivalent.
 𝜇 𝑓𝑎,𝑏 = 15. 

𝜆 𝑓0,𝑏 = 𝜆 𝑥4 + 𝑦6 + 𝑏𝑥2𝑦4 = 1. 

𝜆 𝑓𝑎,𝑏 = 𝜆 𝑥4 + 𝑦6 + 𝑎𝑥2𝑦3 + 𝑏𝑥2𝑦4 > 1 for generic 𝑎, 𝑏 
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Fact. 𝜆 𝑓0  is not a topological invariant.
Example. The class 𝑊1,0: 𝑥4 + 𝑦6 + 𝑎 + 𝑏𝑦 𝑥2𝑦3.

All singularities 𝑓𝑎,𝑏 are topologically equivalent.
 𝜇 𝑓𝑎,𝑏 = 15. 

𝜆 𝑓0,𝑏 = 𝜆 𝑥4 + 𝑦6 + 𝑏𝑥2𝑦4 = 1. 

𝜆 𝑓𝑎,𝑏 = 𝜆 𝑥4 + 𝑦6 + 𝑎𝑥2𝑦3 + 𝑏𝑥2𝑦4 > 1 for generic 𝑎, 𝑏 

Problems have been considered by putting restrictions on:
1. singularities (homog., quasihomog., irreducible,…),
2. class of deformations (non-degenerate, linear,…).



Results.

The results concern the jump for the class of linear 
deformations

𝑓𝑠 = 𝑓0 + 𝑠𝑔,  𝑔 0,0 = 0.

In this case we have a particular jump

𝜆𝑙𝑖𝑛 𝑓0 : = min( 𝜇 𝑓0 − 𝜇 𝑓𝑠 ) ∈ ℕ

over all linear deformations (𝑓𝑠) of 𝑓0 for which 𝜇 𝑓0 −
𝜇 𝑓𝑠 ≠ 0.



Results.

Two powerful tools:

1. M. Caramiñana, J. Roe (2007). Necessary and 
sufficient numerical condition on the Enriques 
diagrams 𝐸(𝑓𝑠) and 𝐸(𝑓0) so that 𝑓𝑠 is a linear 
deformation of 𝑓0 (recall Enriques diagrams represent 
topological types of singularities).



Results.

2. Enriques, Plücker (very long time ago). Formula for the 

Milnor numer (as intersection multiplicity    𝑖(
𝜕𝑓0

𝜕𝑥
,

𝜕𝑓0

𝜕𝑦
)) in 

terms of Enriques diagrams.

𝜇 𝑓0 = ෍

𝑃∈𝑉∞ 𝑓0

𝑒𝑃 𝑓0 𝑒𝑃 𝑓0 − 1 + 1 − 𝑟

Examples.    𝑋9

 𝑓0 = 𝑥4 + 𝑦4                                           𝜇 𝑓0 = 4 ∙ 3 + 1 − 4 = 9



Results.

Examples. 𝐸7

 𝑓0 = 𝑥(𝑥2 + 𝑦3)                   𝜇 𝑓0 = 3 ∙ 2 + 2 ∙ 1 + 1 − 2 = 7



Results.

Jumps (for linear deformations) of quasihomogeneous 
singularities.
A.Zakrzewska (2025). If 𝑓0 = 𝑎𝑝,0𝑥𝑝 + ⋯ + 𝑎0,𝑞𝑦𝑞 is a 
generic quasihomogeneous singularity and 3 ≤ 𝑝 ≤ 𝑞 

                           𝑝 − 2 𝑖𝑓 𝑝 = 𝑞 𝑥4 + 𝑦4

𝜆𝑙𝑖𝑛 𝑓0 =  𝑝 − 1 𝑖𝑓 𝑝 ≠ 𝑞 𝑎𝑛𝑑 𝑝|𝑞 𝑥3+𝑦6                   
                          GCD 𝑝, 𝑞  𝑖𝑓 𝑝 ≠ 𝑞 𝑎𝑛𝑑 𝑝 ∤ 𝑞 𝑥4+𝑦6  

More precise results in the paper (for any coefficients).



Results.

Example. For 𝑓0 = 𝑥5 + 𝑦5 , 𝜇 𝑓0 = 16,   we get

𝜆 𝑓0 = 2, 

𝜆𝑙𝑖𝑛 𝑓0 = 3,

𝜆𝑛𝑑 𝑓0 = 4.



Results.

Characterization of singularities for which 𝜆𝑙𝑖𝑛 𝑓0 = 1
 T.K., A.Zakrzewska (not yet published). 
Theorem. 𝜆𝑙𝑖𝑛 𝑓0 = 1 if and only if the Enriques diagram 
𝐸(𝑓0) of 𝑓0 is (we draw Enriques diagrams without leaves):

1.                     (complete E. diagram                                  )

2.                     (complete E. diagram                                   )
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3.

(all irreducible singularities satisfy this condition).
4.  



Results.

5.

6.  
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Results.

Remarks. 1. For any of this cases we give required linear 
deformation also in the form of the Enriques diagrams.
2. Four first conditions concern the shape of the Enriques 
diagrams at the ends of resolution proces, the last two not.
3. The first four conditions were discovered by S. Gusein-
Zade (1993). We have found only the last two with very 
specific configuration of orders and branches.
4. The method of proof is elementary and is based on the 
Caramiñana and Roe result. 



Applications to 𝛿-constant deformations.

Another discrete invariant of a singularity 𝑓0 is  𝛿-invariant 

(called also Hironaka number). It is a topological invariant 

given by the Milnor Formula

2𝛿 = 𝜇 + 𝑟 − 1,
where 𝜇 is the Milnor number of 𝑓0 and  𝑟 the number of 
branches of 𝑉(𝑓0), or geometrically as the maximal 
number of singularities in deformations of 𝑉(𝑓0). Precisely



Applications to 𝛿-constant deformations.

Take a generic deformation (𝑉𝑠) of  the zero set 𝑉0 = 𝑉(𝑓0) of 𝑓0 

which has only 𝐴1-singularities. Their number is 𝛿 𝑓0 .

Since 𝐴1-singularities are double ordinary singular points,  

𝛿(𝑓0) is also called the number of  double points of 𝑉(𝑓0).
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Applications to 𝛿-constant deformations.

Problem. Describe singularities for which there exist 𝛿-constant 

linear deformations and if yes give topological types in such 

deformations.

Remark. In any 𝜇-constant deformations elements have the 

same topological type.



Example. 𝑓𝑠 𝑥, 𝑦 = 𝑥2 + 𝑦3 + 𝑠𝑦2

               𝑠 = 0                                    𝑠 ≠ 0         

                 μ = 2                                   μ = 1
                  δ =1                                     δ =1

In this 𝛿-constant linear deformation the topological type 

changes. 

Applications to 𝛿-constant deformations.
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2𝛿𝑠 = 𝜇𝑠 + 𝑟𝑠 − 1

we see the deformation (𝑓𝑠) is 𝛿-constant if and only if the jump 

of the Milnor number is equal to the jump up (increase) of the 
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Applications to 𝛿-constant deformations.

Using the Milnor formula in any deformation (𝑓𝑠)
2𝛿𝑠 = 𝜇𝑠 + 𝑟𝑠 − 1

we see the deformation (𝑓𝑠) is 𝛿-constant if and only if the jump 

of the Milnor number is equal to the jump up (increase) of the 

number of branches.

By the theorem we know topological types of singularities and 

its linear deformations for which the jump of the Milnor numbers 

is equal to 1. So, it is easy to check in which of these cases the 

jump of number of branches is also equal to 1. Hence we get



Applications to 𝛿-constant deformations.

Theorem. A singularity 𝑓0 has a 𝛿-constant linear deformation 

(𝑓𝑠) with the jump of the Milnor numbers equal to 1 if and only 

if it has  type 3 in the Theorem.



Applications to 𝛿-constant deformations.

3.

(all irreducible singularities satisfy this condition).



Applications to 𝛿-constant deformations.

Corollary. If 𝑓0 is an ireducible singularity the there exists a 𝛿-

constant linear deformation of 𝑓0 and its toplogical type is given 

by the below Enriques diagram. If the jump of this deformation 

is 1 then this topological type is unique.
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Applications to 𝛿-constant deformations.

Example. Take the cusp 𝑓0 𝑥, 𝑦 = 𝑥2 + 𝑦3

For complete Enriques diagrams

𝑓𝑠 𝑥, 𝑦 = 𝑥2 + 𝑦3 + 𝑠𝑦2



Thank you.



Picture of a deformation from the monograph ”Introduction to Singularities 

and deformations” by Greuel, Lossen and Shustin.
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