# Global Complexification of Restricted Log-Exp-Analytic Functions

Andre Opris

University of Passau

27.06.2025



### Outline

- Structures, o-minimality and definability
- Global complexification
- Restricted log-exp-analytic functions
- A preparation theorem for restricted log-exp-analytic functions
- Main results of my research: Tamm's theorem and complexification for restricted log-exp-analytic functions
- Open questions

#### **Definition**

#### **Definition**

For  $n \in \mathbb{N}$  let  $M_n$  be a set of subsets of  $\mathbb{R}^n$ . Then  $(M_n)_{n \in \mathbb{N}}$  is a **structure** on  $\mathbb{R}$  if the following holds.

(S1)  $M_n$  is a Boolean algebra of subsets of  $\mathbb{R}^n$ .

#### **Definition**

- (S1)  $M_n$  is a Boolean algebra of subsets of  $\mathbb{R}^n$ .
- (S2) If  $A \in M_n$  and  $B \in M_m$  then  $A \times B \in M_{n+m}$ .

#### Definition

- (S1)  $M_n$  is a Boolean algebra of subsets of  $\mathbb{R}^n$ .
- (S2) If  $A \in M_n$  and  $B \in M_m$  then  $A \times B \in M_{n+m}$ .
- (S3) If  $A \in M_{n+1}$  then  $\pi_n(A) \in M_n$  where  $\pi_n : \mathbb{R}^{n+1} \to \mathbb{R}^n, (x_1, ..., x_{n+1}) \mapsto (x_1, ..., x_n)$ , denotes the projection on the first n coordinates.

#### Definition

- (S1)  $M_n$  is a Boolean algebra of subsets of  $\mathbb{R}^n$ .
- (S2) If  $A \in M_n$  and  $B \in M_m$  then  $A \times B \in M_{n+m}$ .
- (S3) If  $A \in M_{n+1}$  then  $\pi_n(A) \in M_n$  where  $\pi_n : \mathbb{R}^{n+1} \to \mathbb{R}^n, (x_1, ..., x_{n+1}) \mapsto (x_1, ..., x_n)$ , denotes the projection on the first n coordinates.
- (S4)  $M_n$  contains the semialgebraic subsets of  $\mathbb{R}^n$ .

#### **Definition**

The structure  $\mathcal{M}=(M_n)_{n\in\mathbb{N}}$  on  $\mathbb{R}$  is called **o-minimal** if additionally the following holds.

(O) The sets in  $M_1$  are exactly the finite unions of intervals and points.

#### **Definition**

The structure  $\mathcal{M}=(M_n)_{n\in\mathbb{N}}$  on  $\mathbb{R}$  is called **o-minimal** if additionally the following holds.

(O) The sets in  $M_1$  are exactly the finite unions of intervals and points.

#### **Definition**

Let  $\mathcal{M}=(M_n)_{n\in\mathbb{N}}$  be an o-minimal structure on  $\mathbb{R}$ . We say the following.

#### **Definition**

The structure  $\mathcal{M}=(M_n)_{n\in\mathbb{N}}$  on  $\mathbb{R}$  is called **o-minimal** if additionally the following holds.

(O) The sets in  $M_1$  are exactly the finite unions of intervals and points.

#### **Definition**

Let  $\mathcal{M}=(M_n)_{n\in\mathbb{N}}$  be an o-minimal structure on  $\mathbb{R}$ . We say the following.

•  $A \subset \mathbb{R}^n$  is  $\mathcal{M}$ -definable if  $A \in M_n$ .

#### **Definition**

The structure  $\mathcal{M}=(M_n)_{n\in\mathbb{N}}$  on  $\mathbb{R}$  is called **o-minimal** if additionally the following holds.

(O) The sets in  $M_1$  are exactly the finite unions of intervals and points.

#### **Definition**

Let  $\mathcal{M}=(M_n)_{n\in\mathbb{N}}$  be an o-minimal structure on  $\mathbb{R}$ . We say the following.

- $A \subset \mathbb{R}^n$  is  $\mathcal{M}$ -definable if  $A \in M_n$ .
- Let  $B \subset \mathbb{R}^n$ . A function  $f : B \to \mathbb{R}^m$  is  $\mathcal{M}$ -definable if its graph  $\{(x, f(x)) \mid x \in B\}$  is  $\mathcal{M}$ -definable.

• R: It consists of all semialgebraic sets.

- R: It consists of all semialgebraic sets.
- $\mathbb{R}_{an}$ : The structure generated by the graphs of restricted analytic functions.

- R: It consists of all semialgebraic sets.
- $\mathbb{R}_{an}$ : The structure generated by the graphs of restricted analytic functions. A function  $f: \mathbb{R}^n \to \mathbb{R}$  is called **restricted analytic** if

$$f(x) = \begin{cases} p(x), & \text{if } x \in [-1, 1]^n, \\ 0 & \text{else} \end{cases}$$

where p(x) is a real power series which converges on an open neighbourhood of  $[-1,1]^n$ .

- R: It consists of all semialgebraic sets.
- $\mathbb{R}_{an}$ : The structure generated by the graphs of restricted analytic functions. A function  $f: \mathbb{R}^n \to \mathbb{R}$  is called **restricted analytic** if

$$f(x) = \begin{cases} p(x), & \text{if } x \in [-1, 1]^n, \\ 0 & \text{else} \end{cases}$$

where p(x) is a real power series which converges on an open neighbourhood of  $[-1,1]^n$ . The definable sets and functions are the so called **globally subanalytic** ones.

- R: It consists of all semialgebraic sets.
- $\mathbb{R}_{an}$ : The structure generated by the graphs of restricted analytic functions. A function  $f: \mathbb{R}^n \to \mathbb{R}$  is called **restricted analytic** if

$$f(x) = \begin{cases} p(x), & \text{if } x \in [-1, 1]^n, \\ 0 & \text{else} \end{cases}$$

where p(x) is a real power series which converges on an open neighbourhood of  $[-1,1]^n$ . The definable sets and functions are the so called **globally subanalytic** ones.

•  $\mathbb{R}_{exp}$ : The structure generated by the graph of the global real exponential function.

- R: It consists of all semialgebraic sets.
- $\mathbb{R}_{an}$ : The structure generated by the graphs of restricted analytic functions. A function  $f: \mathbb{R}^n \to \mathbb{R}$  is called **restricted analytic** if

$$f(x) = \begin{cases} p(x), & \text{if } x \in [-1, 1]^n, \\ 0 & \text{else} \end{cases}$$

where p(x) is a real power series which converges on an open neighbourhood of  $[-1,1]^n$ . The definable sets and functions are the so called **globally subanalytic** ones.

- $\mathbb{R}_{exp}$ : The structure generated by the graph of the global real exponential function.
- ullet  $\mathbb{R}_{an,exp}$ : The structure generated by all globally subanalytic sets and the graph of the global real exponential function.

 ${\cal M}$  denotes a fixed o-minimal structure on the reals. Definable means  ${\cal M}$ -definable.

We identify  $\mathbb{C}$  with  $\mathbb{R}^2$  via  $x+iy\mapsto (x,y)$ . A set  $Z\subset\mathbb{C}^m$  is definable if it is definable considered as a subset of  $\mathbb{R}^{2m}$ .

We identify  $\mathbb{C}$  with  $\mathbb{R}^2$  via  $x+iy\mapsto (x,y)$ . A set  $Z\subset\mathbb{C}^m$  is definable if it is definable considered as a subset of  $\mathbb{R}^{2m}$ .

#### **Definition**

We say that  $\mathcal{M}$  has **complexification** if every real analytic definable function has locally a definable holomorphic extension.

#### Example

• Let  $\mathcal M$  be an o-minimal expansion of  $\mathbb R_{an}$  (e.g.  $\mathbb R_{an}$  or  $\mathbb R_{an,exp}$ ). Then  $\mathcal M$  has complexification.

#### Example

- Let  $\mathcal M$  be an o-minimal expansion of  $\mathbb R_{\mathsf{an}}$  (e.g.  $\mathbb R_{\mathsf{an}}$  or  $\mathbb R_{\mathsf{an,exp}}$ ). Then  $\mathcal M$  has complexification.
- $\mathbb{R}_{exp}$  does not have complexification:

#### Example

- Let  $\mathcal M$  be an o-minimal expansion of  $\mathbb R_{\mathsf{an}}$  (e.g.  $\mathbb R_{\mathsf{an}}$  or  $\mathbb R_{\mathsf{an,exp}}$ ). Then  $\mathcal M$  has complexification.
- $\mathbb{R}_{exp}$  does not have complexification:
  - Consider the  $\mathbb{R}_{exp}$ -definable function  $f: \mathbb{R} \to \mathbb{R}, x \mapsto \exp(x)$ .

### Example

- Let  $\mathcal M$  be an o-minimal expansion of  $\mathbb R_{\mathsf{an}}$  (e.g.  $\mathbb R_{\mathsf{an}}$  or  $\mathbb R_{\mathsf{an,exp}}$ ). Then  $\mathcal M$  has complexification.
- $\mathbb{R}_{exp}$  does not have complexification:
  - Consider the  $\mathbb{R}_{exp}$ -definable function  $f: \mathbb{R} \to \mathbb{R}, x \mapsto \exp(x)$ .
  - Consider

$$F: \mathbb{C} \to \mathbb{C}, z \mapsto e^z = e^x(\cos(y) + i\sin(y))$$

which is holomorpic where z := x + iy.

### Example

- Let  $\mathcal M$  be an o-minimal expansion of  $\mathbb R_{\mathsf{an}}$  (e.g.  $\mathbb R_{\mathsf{an}}$  or  $\mathbb R_{\mathsf{an,exp}}$ ). Then  $\mathcal M$  has complexification.
- $\mathbb{R}_{exp}$  does not have complexification:
  - Consider the  $\mathbb{R}_{exp}$ -definable function  $f: \mathbb{R} \to \mathbb{R}, x \mapsto \exp(x)$ .
  - Consider

$$F: \mathbb{C} \to \mathbb{C}, z \mapsto e^z = e^x(\cos(y) + i\sin(y))$$

which is holomorpic where z := x + iy.

Let  $x \in \mathbb{R}$  and let V be an open ball in  $\mathbb{C}$  around x.

### Example

- Let  $\mathcal M$  be an o-minimal expansion of  $\mathbb R_{\mathsf{an}}$  (e.g.  $\mathbb R_{\mathsf{an}}$  or  $\mathbb R_{\mathsf{an,exp}}$ ). Then  $\mathcal M$  has complexification.
- $\mathbb{R}_{exp}$  does not have complexification:
  - Consider the  $\mathbb{R}_{exp}$ -definable function  $f: \mathbb{R} \to \mathbb{R}, x \mapsto \exp(x)$ .
  - Consider

$$F: \mathbb{C} \to \mathbb{C}, z \mapsto e^z = e^x(\cos(y) + i\sin(y))$$

which is holomorpic where z := x + iy.

- Let  $x \in \mathbb{R}$  and let V be an open ball in  $\mathbb{C}$  around x.
- By the identity theorem we see that  $F|_V$  is the unique holomorphic extension of  $f|_{V \cap \mathbb{R}}$ .

### Example

- Let  $\mathcal M$  be an o-minimal expansion of  $\mathbb R_{\mathsf{an}}$  (e.g.  $\mathbb R_{\mathsf{an}}$  or  $\mathbb R_{\mathsf{an,exp}}$ ). Then  $\mathcal M$  has complexification.
- $\mathbb{R}_{exp}$  does not have complexification:
  - Consider the  $\mathbb{R}_{exp}$ -definable function  $f: \mathbb{R} \to \mathbb{R}, x \mapsto \exp(x)$ .
  - Consider

$$F: \mathbb{C} \to \mathbb{C}, z \mapsto e^z = e^x(\cos(y) + i\sin(y))$$

which is holomorpic where z := x + iy.

- Let  $x \in \mathbb{R}$  and let V be an open ball in  $\mathbb{C}$  around x.
- By the identity theorem we see that  $F|_V$  is the unique holomorphic extension of  $f|_{V \cap \mathbb{R}}$ .
- $F|_V$  is not  $\mathbb{R}_{exp}$ -definable (Bianconi, 1997).

# Global complexification

#### Definition

We say that  $\mathcal{M}$  has **global complexification** if every real analytic definable function has a definable holomorphic extension.

# Global complexification

#### **Definition**

We say that  $\mathcal{M}$  has **global complexification** if every real analytic definable function has a definable holomorphic extension.

### Example

 $\mathbb{R}_{\mathsf{exp}}$  does not have global complexification.

Theorem (T. Kaiser, 2016)

The following holds.

### Theorem (T. Kaiser, 2016)

The following holds.

(1) The o-minimal structure  $\mathbb{R}$  has global complexification.

### Theorem (T. Kaiser, 2016)

The following holds.

- (1) The o-minimal structure  $\mathbb{R}$  has global complexification.
- (2) The o-minimal structure  $\mathbb{R}_{an}$  has global complexification.

#### Ideas for the proof of (2):

By a preparation theorem of Lion and Rolin a globally subanalytic function can be piecewise written as

$$a(t) \cdot |x - \theta(t)|^q \cdot v((b_i(t)|x - \theta(t)|^{p_i})_{i=1,\dots,s})$$

where

#### Ideas for the proof of (2):

By a preparation theorem of Lion and Rolin a globally subanalytic function can be piecewise written as

$$a(t) \cdot |x - \theta(t)|^{\mathbf{q}} \cdot v((b_i(t)|x - \theta(t)|^{\mathbf{p}_i})_{i=1,\dots,s})$$

#### where

 $\bullet \ q, p_1, ..., p_s \in \mathbb{Q},$ 

### Ideas for the proof of (2):

By a preparation theorem of Lion and Rolin a globally subanalytic function can be piecewise written as

$$a(t) \cdot |x - \theta(t)|^{q} \cdot v((b_{i}(t)|x - \theta(t)|^{p_{i}})_{i=1,\dots,s})$$

#### where

- $q, p_1, ..., p_s \in \mathbb{Q}$ ,
- a(t),  $\theta(t)$  and  $b_1(t)$ , ...,  $b_s(t)$  are globally subanalytic which depend only on t,

### Ideas for the proof of (2):

By a preparation theorem of Lion and Rolin a globally subanalytic function can be piecewise written as

$$a(t) \cdot |x - \theta(t)|^q \cdot v((b_i(t)|x - \theta(t)|^{p_i})_{i=1,\dots,s})$$

#### where

- $q, p_1, ..., p_s \in \mathbb{Q}$ ,
- a(t),  $\theta(t)$  and  $b_1(t)$ , ...,  $b_s(t)$  are globally subanalytic which depend only on t,
- v is a power series which converges absolutely on an open neighbourhood of  $[-1,1]^s$  with  $v([-1,1]^s) \subset \mathbb{R}_{>0}$

## Ideas for the proof of (2):

By a preparation theorem of Lion and Rolin a globally subanalytic function can be piecewise written as

$$a(t) \cdot |x - \theta(t)|^q \cdot v((b_i(t)|x - \theta(t)|^{p_i})_{i=1,\dots,s})$$

#### where

- $q, p_1, ..., p_s \in \mathbb{Q}$ ,
- a(t),  $\theta(t)$  and  $b_1(t)$ , ...,  $b_s(t)$  are globally subanalytic which depend only on t,
- v is a power series which converges absolutely on an open neighbourhood of  $[-1,1]^s$  with  $v([-1,1]^s) \subset \mathbb{R}_{>0}$  and

$$b_i(t)|x - \theta(t)|^{p_i} \in [-1, 1].$$



Prepared function can be piecewise extended in x as

$$F(t,z) = a(t) \cdot (z - \theta(t))^q \cdot V((b_i(t)(z - \theta(t))^{p_i})_{i=1,\dots,s})$$

where

.

• с

Prepared function can be piecewise extended in x as

$$F(t,z) = a(t) \cdot (z - \theta(t))^q \cdot V((b_i(t)(z - \theta(t))^{p_i})_{i=1,\dots,s})$$

where z is complex variable,

•

Prepared function can be piecewise extended in x as

$$F(t,z) = a(t) \cdot (z - \theta(t))^q \cdot V((b_i(t)(z - \theta(t))^{p_i})_{i=1,\dots,s})$$

where z is complex variable, V is complex convergent power series **extending** v.

е <u>с</u>

Prepared function can be piecewise extended in x as

$$F(t,z) = a(t) \cdot (z - \theta(t))^q \cdot V((b_i(t)(z - \theta(t))^{p_i})_{i=1,\dots,s})$$

where z is complex variable, V is complex convergent power series **extending** v.

#### Domain:

$$A = \{(t,z) \in \pi(C) \times \mathbb{C} \mid \alpha(t) < |z - \theta(t)| < \omega(t), \} \setminus ] - \infty, \theta(t)[$$
 for globally subanalytic  $\alpha, \omega : \pi(C) \to \mathbb{R}^+$  where  $\alpha < \omega$ .

. с

Prepared function can be piecewise extended in x as

$$F(t,z) = a(t) \cdot (z - \theta(t))^q \cdot V((b_i(t)(z - \theta(t))^{p_i})_{i=1,\dots,s})$$

where z is complex variable, V is complex convergent power series **extending** v.

#### Domain:

 $A = \{(t,z) \in \pi(C) \times \mathbb{C} \mid \alpha(t) < |z - \theta(t)| < \omega(t), \} \setminus ] - \infty, \theta(t)[$  for globally subanalytic  $\alpha, \omega : \pi(C) \to \mathbb{R}^+$  where  $\alpha < \omega$ .



Prepared function can be piecewise extended in x as

$$F(t,z) = a(t) \cdot (z - \theta(t))^q \cdot V((b_i(t)(z - \theta(t))^{p_i})_{i=1,\dots,s})$$

where z is complex variable, V is complex convergent power series **extending** v.

#### Domain:

 $A = \{(t,z) \in \pi(C) \times \mathbb{C} \mid \alpha(t) < |z - \theta(t)| < \omega(t), \} \setminus ] - \infty, \theta(t)[$  for globally subanalytic  $\alpha, \omega : \pi(C) \to \mathbb{R}^+$  where  $\alpha < \omega$ .



Prepared function can be piecewise extended in x as

$$F(t,z) = a(t) \cdot (z - \theta(t))^q \cdot V((b_i(t)(z - \theta(t))^{p_i})_{i=1,\dots,s})$$

where z is complex variable, V is complex convergent power series **extending** v.

#### Domain:

$$A = \{(t, z) \in \pi(C) \times \mathbb{C} \mid \alpha(t) < |z - \theta(t)| < \omega(t), \} \setminus ] - \infty, \theta(t)[$$
 for  $\alpha, \omega : \pi(C) \to \mathbb{R}^+$  where  $\alpha < \omega$ .

## Cauchy's integral for gluing:

$$\Delta := \{(t,s,z) \in \pi(\mathcal{C}) \times \mathbb{R}_{>0} \times \mathbb{C} \mid \alpha(t) < s < \omega(t), z \in B(\theta(t),s/2)\}$$
 and

$$G:\Delta \to \mathbb{C}, (t,z,s) \mapsto \int_{\partial B( heta(t),s)} rac{F(t,\xi)}{\xi-z} d\xi.$$

Prepared function can be piecewise extended in x as

$$F(t,z) = a(t) \cdot (z - \theta(t))^q \cdot V((b_i(t)(z - \theta(t))^{p_i})_{i=1,\dots,s})$$

where z is complex variable, V is complex convergent power series **extending** v.

#### Domain:

$$A = \{(t, z) \in \pi(C) \times \mathbb{C} \mid \alpha(t) < |z - \theta(t)| < \omega(t), \} \setminus ] - \infty, \theta(t)[$$
 for  $\alpha, \omega : \pi(C) \to \mathbb{R}^+$  where  $\alpha < \omega$ .

## Cauchy's integral for gluing:

$$\Delta := \{(t,s,z) \in \pi(\mathcal{C}) \times \mathbb{R}_{>0} \times \mathbb{C} \mid \alpha(t) < s < \omega(t), z \in B(\theta(t),s/2)\}$$
 and

$$G:\Delta \to \mathbb{C}, (t,z,s) \mapsto \int_{\partial B( heta(t),s)} rac{F(t,\xi)}{\xi-z} d\xi.$$

Definable in  $\mathbb{R}_{an}!$ 

Prepared function can be piecewise extended in x as

$$F(t,z) = a(t) \cdot (z - \theta(t))^q \cdot V((b_i(t)(z - \theta(t))^{p_i})_{i=1,\dots,s})$$

where z is complex variable, V is complex convergent power series **extending** v.

#### Domain:

$$A = \{(t, z) \in \pi(C) \times \mathbb{C} \mid \alpha(t) < |z - \theta(t)| < \omega(t), \} \setminus ] - \infty, \theta(t)[$$
 for  $\alpha, \omega : \pi(C) \to \mathbb{R}^+$  where  $\alpha < \omega$ .

## Cauchy's integral for gluing:

$$\Delta:=\{(t,s,z)\in\pi(\mathcal{C}) imes\mathbb{R}_{>0} imes\mathbb{C}\mid lpha(t)< s<\omega(t),z\in B( heta(t),s/2)\}$$
 and

$$G:\Delta \to \mathbb{C}, (t,z,s) \mapsto \int_{\partial B( heta(t),s)} rac{F(t,\xi)}{\xi-z} d\xi.$$

#### Definable in $\mathbb{R}_{an}!$

Finally: Do an induction on the number of variables.

Question:

Does  $\mathbb{R}_{\text{an,exp}}$  have global complexification?

## **Further Notation**

 $\bullet$  From now on definable means  $\mathbb{R}_{\text{an},\text{exp}}\text{-definable}.$ 

## **Further Notation**

- From now on definable means  $\mathbb{R}_{an,exp}$ -definable.
- Terms are  $\mathcal{L}_{an}(\exp, \log)$ -terms where  $\mathcal{L}_{an}(\exp, \log)$  denotes the language of ordered rings with additional symbols for all restricted analytic functions, the global exponential and global logarithm.

## **Further Notation**

- From now on definable means  $\mathbb{R}_{an,exp}$ -definable.
- Terms are  $\mathcal{L}_{an}(\exp, \log)$ -terms where  $\mathcal{L}_{an}(\exp, \log)$  denotes the language of ordered rings with additional symbols for all restricted analytic functions, the global exponential and global logarithm.

**Examples:**  $x^2$  and  $\exp(x \cdot y^2 \cdot \log(z))$  are terms.

Theorem (L. van den Dries, A. Macintyre and D. Marker, 1994)

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be definable. Then f is piecewise given by terms.

Theorem (L. van den Dries, A. Macintyre and D. Marker, 1994)

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be definable. Then f is piecewise given by terms.

**This means:** Definable functions are piecewise compositions of globally subanalytic functions, the global real logarithm and the global real exponential. So we call them also **log-exp-analytic**.

Theorem (L. van den Dries, A. Macintyre and D. Marker, 1994)

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be definable. Then f is piecewise given by terms.

**This means:** Definable functions are piecewise compositions of globally subanalytic functions, the global real logarithm and the global real exponential. So we call them also **log-exp-analytic**.

Basic observations in  $\mathbb{R}_{an,exp}$ :

Theorem (L. van den Dries, A. Macintyre and D. Marker, 1994)

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be definable. Then f is piecewise given by terms.

**This means:** Definable functions are piecewise compositions of globally subanalytic functions, the global real logarithm and the global real exponential. So we call them also **log-exp-analytic**.

## Basic observations in $\mathbb{R}_{an,exp}$ :

•  $\log: \mathbb{R}_{>0} \to \mathbb{R}$  has a global complexification  $\text{Log}: \mathbb{C} \setminus \{x \in \mathbb{R} \mid x \leq 0\} \to \mathbb{C}, z \mapsto \log(|z|) + i \arg(z).$ 

Theorem (L. van den Dries, A. Macintyre and D. Marker, 1994)

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be definable. Then f is piecewise given by terms.

**This means:** Definable functions are piecewise compositions of globally subanalytic functions, the global real logarithm and the global real exponential. So we call them also **log-exp-analytic**.

## Basic observations in $\mathbb{R}_{an,exp}$ :

- $\log : \mathbb{R}_{>0} \to \mathbb{R}$  has a global complexification  $\text{Log} : \mathbb{C} \setminus \{x \in \mathbb{R} \mid x \leq 0\} \to \mathbb{C}, z \mapsto \log(|z|) + i \arg(z).$
- exp :  $\mathbb{R} \to \mathbb{R}$  has a global complexification Exp :  $\{z \in \mathbb{C} \mid |\operatorname{Im}(z)| < \pi\} \to \mathbb{C}, (x+iy) \mapsto e^{x}(\cos(y)+i\sin(y)).$

Theorem (L. van den Dries, A. Macintyre and D. Marker, 1994)

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be definable. Then f is piecewise given by terms.

**This means:** Definable functions are piecewise compositions of globally subanalytic functions, the global real logarithm and the global real exponential. So we call them also **log-exp-analytic**.

## Basic observations in $\mathbb{R}_{an,exp}$ :

- $\log : \mathbb{R}_{>0} \to \mathbb{R}$  has a global complexification  $\text{Log} : \mathbb{C} \setminus \{x \in \mathbb{R} \mid x \leq 0\} \to \mathbb{C}, z \mapsto \log(|z|) + i \arg(z).$
- exp :  $\mathbb{R} \to \mathbb{R}$  has a global complexification Exp :  $\{z \in \mathbb{C} \mid |\text{Im}(z)| < \pi\} \to \mathbb{C}, (x + iy) \mapsto e^x(\cos(y) + i\sin(y)).$

#### Consequence:

Theorem (T. Kaiser, 2016)

Let  $U \subset \mathbb{R}$  be open. A definable real analytic function  $f: U \to \mathbb{R}$  has a global complexification, i.e. a definable holomorphic extension.

| My contribution as a PhD stu             | dent                                                            |
|------------------------------------------|-----------------------------------------------------------------|
| I considered definable real analytic fur | nctions in more than one variable.                              |
|                                          |                                                                 |
| Andre Opris                              | Global Complexification of Restricted Log-Exp-Analytic Function |

## Log-Analytic Functions

#### **Definition**

We call a function  $f: X \to \mathbb{R}$  **log-analytic** if f is piecewise the composition of globally subanalytic functions and the global logarithm.

# Log-Analytic Functions

#### **Definition**

We call a function  $f: X \to \mathbb{R}$  **log-analytic** if f is piecewise the composition of globally subanalytic functions and the global logarithm.

## Example

The function

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto \log(1 + x^2 + |x|),$$

is log-analytic.

#### **Definition**

Let  $X \subset \mathbb{R}^n$  be open. We call a function  $f: X \to \mathbb{R}$  **restricted log-exp-analytic** if f is the composition of log-analytic functions and exponentials of locally bounded functions.

#### Definition

Let  $X \subset \mathbb{R}^n$  be open. We call a function  $f: X \to \mathbb{R}$  **restricted log-exp-analytic** if f is the composition of log-analytic functions and exponentials of locally bounded functions.

## Example

The definable function

$$h: \mathbb{R} \to \mathbb{R}, \ x \mapsto \left\{ egin{array}{ll} \exp(-1/x), & x > 0, \\ 0, & x \leq 0, \end{array} 
ight.$$

is not restricted log-exp-analytic, but  $h|_{\mathbb{R}_{>0}}$  is.

#### Definition

Let  $X \subset \mathbb{R}^n$  be open. We call a function  $f: X \to \mathbb{R}$  **restricted log-exp-analytic** if f is the composition of log-analytic functions and exponentials of locally bounded functions.

## Example

The definable function

$$h: \mathbb{R} \to \mathbb{R}, \ x \mapsto \left\{ egin{array}{ll} \exp(-1/x), & x > 0, \\ 0, & x \leq 0, \end{array} \right.$$

is not restricted log-exp-analytic, but  $h|_{\mathbb{R}_{>0}}$  is.

We see

globally subanalytic

#### Definition

Let  $X \subset \mathbb{R}^n$  be open. We call a function  $f: X \to \mathbb{R}$  **restricted log-exp-analytic** if f is the composition of log-analytic functions and exponentials of locally bounded functions.

## Example

The definable function

$$h: \mathbb{R} \to \mathbb{R}, \ x \mapsto \left\{ egin{array}{ll} \exp(-1/x), & x > 0, \\ 0, & x \leq 0, \end{array} \right.$$

is not restricted log-exp-analytic, but  $h|_{\mathbb{R}_{>0}}$  is.

We see

globally subanalytic ⊂ log-analytic

#### Definition

Let  $X \subset \mathbb{R}^n$  be open. We call a function  $f: X \to \mathbb{R}$  **restricted log-exp-analytic** if f is the composition of log-analytic functions and exponentials of locally bounded functions.

## Example

The definable function

$$h: \mathbb{R} \to \mathbb{R}, \ x \mapsto \left\{ egin{array}{ll} \exp(-1/x), & x > 0, \\ 0, & x \leq 0, \end{array} \right.$$

is not restricted log-exp-analytic, but  $h|_{\mathbb{R}_{>0}}$  is.

We see

globally subanalytic  $\subset$  log-analytic  $\subset$  restricted log-exp-analytic

#### **Definition**

Let  $X \subset \mathbb{R}^n$  be open. We call a function  $f: X \to \mathbb{R}$  **restricted log-exp-analytic** if f is the composition of log-analytic functions and exponentials of locally bounded functions.

## Example

The definable function

$$h: \mathbb{R} \to \mathbb{R}, \ x \mapsto \left\{ egin{array}{ll} \exp(-1/x), & x > 0, \\ 0, & x \leq 0, \end{array} \right.$$

is not restricted log-exp-analytic, but  $h|_{\mathbb{R}_{>0}}$  is.

We see

globally subanalytic  $\subset$  log-analytic  $\subset$  restricted log-exp-analytic  $\subset$  log-exp-analytic = definable.

## Restricted Log-Exp-Analytic Functions

**Results**: I established some differentiability results and global complexification for the big class of restricted log-exp-analytic functions.

## Restricted Log-Exp-Analytic Functions

**Results**: I established some differentiability results and global complexification for the big class of restricted log-exp-analytic functions.

**Strategy**: Determine a suitable preparation theorem for a restricted log-exp-analytic function as it has been done for globally subanalytic functions.

# A Preparation Theorem for Log-Analytic Functions

## Definition (Lion/Rolin 1997)

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. A tuple  $(y_0, ..., y_r)$  of functions on C is called **logarithmic scale** on C with **center**  $\Theta := (\Theta_0, ..., \Theta_r)$  if the following holds:

# A Preparation Theorem for Log-Analytic Functions

## Definition (Lion/Rolin 1997)

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. A tuple  $(y_0, ..., y_r)$  of functions on C is called **logarithmic scale** on C with **center**  $\Theta := (\Theta_0, ..., \Theta_r)$  if the following holds:

• 
$$y_j > 0$$
 or  $y_j < 0$ ,

# A Preparation Theorem for Log-Analytic Functions

## Definition (Lion/Rolin 1997)

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. A tuple  $(y_0, ..., y_r)$  of functions on C is called **logarithmic scale** on C with **center**  $\Theta := (\Theta_0, ..., \Theta_r)$  if the following holds:

- $y_j > 0$  or  $y_j < 0$ ,
- $\Theta_j(t)$  is a definable function on  $\pi(C)$ ,

## Definition (Lion/Rolin 1997)

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. A tuple  $(y_0, ..., y_r)$  of functions on C is called **logarithmic scale** on C with **center**  $\Theta := (\Theta_0, ..., \Theta_r)$  if the following holds:

- $y_j > 0$  or  $y_j < 0$ ,
- $\Theta_j(t)$  is a definable function on  $\pi(C)$ ,
- for  $(t,x) \in C$  we have  $y_0(t,x) = x \Theta_0(t)$ ,

## Definition (Lion/Rolin 1997)

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. A tuple  $(y_0, ..., y_r)$  of functions on C is called **logarithmic scale** on C with **center**  $\Theta := (\Theta_0, ..., \Theta_r)$  if the following holds:

- $y_j > 0$  or  $y_j < 0$ ,
- $\Theta_j(t)$  is a definable function on  $\pi(C)$ ,
- for  $(t,x) \in C$  we have  $y_0(t,x) = x \Theta_0(t)$ ,
- for  $(t,x) \in C$  we have  $y_j(t,x) = \log(|y_{j-1}(t,x)|) \Theta_j(t)$   $(j \in \{1,...,r\}).$

#### Definition

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. Let  $g: C \to \mathbb{R}$  be a function. We say that g is **log-analytically prepared if** 

$$g = a \cdot |y_0|^{q_0} \cdot ... \cdot |y_r|^{q_r} \cdot v((b_i \cdot |y_0|^{p_{i0}} \cdot ... \cdot |y_r|^{p_{ir}})_{i=1,...,s})$$

#### Definition

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. Let  $g: C \to \mathbb{R}$  be a function. We say that g is **log-analytically prepared if** 

$$g = a \cdot |y_0|^{q_0} \cdot ... \cdot |y_r|^{q_r} \cdot v((b_i \cdot |y_0|^{p_{i_0}} \cdot ... \cdot |y_r|^{p_{i_r}})_{i=1,...,s})$$

• 
$$q_j, p_{ij} \in \mathbb{Q}$$
 for  $j \in \{0, ..., r\}$ ,

#### Definition

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. Let  $g: C \to \mathbb{R}$  be a function. We say that g is **log-analytically prepared if** 

$$g = a \cdot |y_0|^{q_0} \cdot ... \cdot |y_r|^{q_r} \cdot v((b_i \cdot |y_0|^{p_{i0}} \cdot ... \cdot |y_r|^{p_{ir}})_{i=1,...,s})$$

- $q_j, p_{ij} \in \mathbb{Q}$  for  $j \in \{0, ..., r\}$ ,
- a(t) and  $b_1(t), ..., b_s(t)$  are definable functions on  $\pi(C)$ ,

#### Definition

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. Let  $g: C \to \mathbb{R}$  be a function. We say that g is **log-analytically prepared if** 

$$g = a \cdot |y_0|^{q_0} \cdot ... \cdot |y_r|^{q_r} \cdot v((b_i \cdot |y_0|^{p_{i0}} \cdot ... \cdot |y_r|^{p_{ir}})_{i=1,...,s})$$

- $q_j, p_{ij} \in \mathbb{Q}$  for  $j \in \{0, ..., r\}$ ,
- a(t) and  $b_1(t),...,b_s(t)$  are definable functions on  $\pi(C)$ ,
- $(y_0, ..., y_r)$  is a logarithmic scale on C,

#### Definition

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. Let  $g: C \to \mathbb{R}$  be a function. We say that g is **log-analytically prepared if** 

$$g = a \cdot |y_0|^{q_0} \cdot ... \cdot |y_r|^{q_r} \cdot v((b_i \cdot |y_0|^{p_{i0}} \cdot ... \cdot |y_r|^{p_{ir}})_{i=1,...,s})$$

- $q_j, p_{ij} \in \mathbb{Q}$  for  $j \in \{0, ..., r\}$ ,
- a(t) and  $b_1(t),...,b_s(t)$  are definable functions on  $\pi(C)$ ,
- $(y_0, ..., y_r)$  is a logarithmic scale on C,
- v is a power series which converges on an open neighbourhood of  $[-1,1]^s$  with  $v([-1,1]^s)\subset \mathbb{R}_{>0}$

#### Definition

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. Let  $g: C \to \mathbb{R}$  be a function. We say that g is **log-analytically prepared if** 

$$g = a \cdot |y_0|^{q_0} \cdot ... \cdot |y_r|^{q_r} \cdot v((b_i \cdot |y_0|^{p_{i0}} \cdot ... \cdot |y_r|^{p_{ir}})_{i=1,...,s})$$

- $q_j, p_{ij} \in \mathbb{Q}$  for  $j \in \{0, ..., r\}$ ,
- a(t) and  $b_1(t),...,b_s(t)$  are definable functions on  $\pi(C)$ ,
- $(y_0, ..., y_r)$  is a logarithmic scale on C,
- v is a power series which converges on an open neighbourhood of  $[-1,1]^s$  with  $v([-1,1]^s)\subset \mathbb{R}_{>0}$  and

$$b_i \cdot |y_0|^{p_{i0}} \cdot ... \cdot |y_r|^{p_{ir}} \in [-1,1].$$

## Theorem (Lion/Rolin, 1998)

Let  $X \subset \mathbb{R}^n \times \mathbb{R}$  be definable. Let  $f: X \to \mathbb{R}$  be log-analytic. Then there is a partition  $\mathcal{C}$  of X into finitely many definable cells such that  $f|_{\mathcal{C}}$  is log-analytically prepared for  $C \in \mathcal{C}$ .

## Theorem (Lion/Rolin, 1998)

Let  $X \subset \mathbb{R}^n \times \mathbb{R}$  be definable. Let  $f: X \to \mathbb{R}$  be log-analytic. Then there is a partition  $\mathcal{C}$  of X into finitely many definable cells such that  $f|_{\mathcal{C}}$  is log-analytically prepared for  $C \in \mathcal{C}$ .

## Remark (Kaiser/Opris, 2022)

In general the partition  $\mathcal C$  cannot be chosen in this way that  $f|_{\mathcal C}$  is log-analytically prepared with log-analytic data for every  $\mathcal C\in\mathcal C$ .

## Theorem (Lion/Rolin, 1998)

Let  $X \subset \mathbb{R}^n \times \mathbb{R}$  be definable. Let  $f: X \to \mathbb{R}$  be log-analytic. Then there is a partition  $\mathcal{C}$  of X into finitely many definable cells such that  $f|_{\mathcal{C}}$  is log-analytically prepared for  $C \in \mathcal{C}$ .

## Remark (Kaiser/Opris, 2022)

In general the partition C cannot be chosen in this way that  $f|_C$  is log-analytically prepared with log-analytic data for every  $C \in C$ .

**Consequence**: Hard to show that log-analytic functions are closed under global complexification.

#### **Definition**

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. We call  $g : \pi(C) \to \mathbb{R}$  C-heir if there is a logarithmic scale  $(\tilde{y}_0, ..., \tilde{y}_r)$  with center  $(\tilde{\Theta}_0, ..., \tilde{\Theta}_r)$  on C and  $I \in \{0, ..., r\}$  such that  $g = \exp(\tilde{\Theta}_I)$ .

#### **Definition**

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. We call  $g : \pi(C) \to \mathbb{R}$  C-heir if there is a logarithmic scale  $(\tilde{y}_0, ..., \tilde{y}_r)$  with center  $(\tilde{\Theta}_0, ..., \tilde{\Theta}_r)$  on C and  $I \in \{0, ..., r\}$  such that  $g = \exp(\tilde{\Theta}_I)$ .

#### Definition

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. We call  $g : \pi(C) \to \mathbb{R}$  C-nice if g is the composition of log-analytic functions and C-heirs.

#### **Definition**

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. We call  $g : \pi(C) \to \mathbb{R}$  C-heir if there is a logarithmic scale  $(\tilde{y}_0, ..., \tilde{y}_r)$  with center  $(\tilde{\Theta}_0, ..., \tilde{\Theta}_r)$  on C and  $I \in \{0, ..., r\}$  such that  $g = \exp(\tilde{\Theta}_I)$ .

#### **Definition**

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. We call  $g : \pi(C) \to \mathbb{R}$  C-nice if g is the composition of log-analytic functions and C-heirs.

#### Remark

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be open. A C-nice function is restricted log-exp-analytic since the center of every logarithmic scale on C is locally bounded.

## Theorem (Opris, 2023)

Let  $X \subset \mathbb{R}^n \times \mathbb{R}$  be definable. Let  $f: X \to \mathbb{R}$  be log-analytic. Then there is a partition  $\mathcal{C}$  of X into finitely many definable cells such that  $f|_{\mathcal{C}}$  is log-analytically prepared with C-nice data for  $C \in \mathcal{C}$ .

## Theorem (Opris, 2023)

Let  $X \subset \mathbb{R}^n \times \mathbb{R}$  be definable. Let  $f: X \to \mathbb{R}$  be log-analytic. Then there is a partition  $\mathcal{C}$  of X into finitely many definable cells such that  $f|_{\mathcal{C}}$  is log-analytically prepared with C-nice data for  $C \in \mathcal{C}$ .

**This means:** For  $C \in \mathcal{C}$  we have

$$f|_{C} = \mathbf{a} \cdot |y_0|^{q_0} \cdot ... \cdot |y_r|^{q_r} \cdot v((\mathbf{b}_i \cdot |y_0|^{p_{i0}} \cdot ... \cdot |y_r|^{p_{ir}})_{i=1,...,s})$$

where  $a, b_1, ..., b_s$  and the center  $(\Theta_0, ..., \Theta_r)$  of  $(y_0, ..., y_r)$  are C-nice.

## Theorem (Opris, 2023)

Let  $X \subset \mathbb{R}^n \times \mathbb{R}$  be definable. Let  $f: X \to \mathbb{R}$  be log-analytic. Then there is a partition  $\mathcal{C}$  of X into finitely many definable cells such that  $f|_{\mathcal{C}}$  is log-analytically prepared with C-nice data for  $C \in \mathcal{C}$ .

**This means:** For  $C \in \mathcal{C}$  we have

$$f|_{C} = a \cdot |y_0|^{q_0} \cdot ... \cdot |y_r|^{q_r} \cdot v((b_i \cdot |y_0|^{p_{i0}} \cdot ... \cdot |y_r|^{p_{ir}})_{i=1,...,s})$$

where  $a, b_1, ..., b_s$  and the center  $(\Theta_0, ..., \Theta_r)$  of  $(y_0, ..., y_r)$  are C-nice.

## Remark, Kaiser/Opris 2022

On simple cells which are cells of the form

$$C := \{(t, x) \in D \times \mathbb{R} \mid 0 < x < d(t)\}$$

where  $D \subset \mathbb{R}^n$  is a cell and  $d: D \to \mathbb{R}^+$  is definable,  $\Theta = 0$  is satisfied.

## Theorem (Opris, 2023)

Let  $X \subset \mathbb{R}^n \times \mathbb{R}$  be definable. Let  $f: X \to \mathbb{R}$  be log-analytic. Then there is a partition  $\mathcal{C}$  of X into finitely many definable cells such that  $f|_{\mathcal{C}}$  is log-analytically prepared with C-nice data for  $C \in \mathcal{C}$ .

**This means:** For  $C \in \mathcal{C}$  we have

$$f|_{C} = {\color{red} a \cdot |y_0|^{q_0} \cdot ... \cdot |y_r|^{q_r} \cdot v(({\color{blue} b_i \cdot |y_0|^{p_{i0}} \cdot ... \cdot |y_r|^{p_{ir}}})_{i=1,...,s})}$$

where  $a, b_1, ..., b_s$  and the center  $(\Theta_0, ..., \Theta_r)$  of  $(y_0, ..., y_r)$  are C-nice.

## Remark, Kaiser/Opris 2022

On simple cells which are cells of the form

$$C := \{(t, x) \in D \times \mathbb{R} \mid 0 < x < d(t)\}$$

where  $D \subset \mathbb{R}^n$  is a cell and  $d : D \to \mathbb{R}^+$  is definable,  $\Theta = 0$  is satisfied.

**Consequence**: Log-Analytic functions are closed under differentiation.

#### **Definition**

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. We say that the function  $f: C \to \mathbb{R}$  is **log-exp-analytically prepared** if

#### **Definition**

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. We say that the function  $f: C \to \mathbb{R}$  is **log-exp-analytically prepared** if

$$f = a \cdot |y_0|^{q_0} \cdot ... \cdot |y_r|^{q_r} \cdot e^c \cdot v((b_i \cdot |y_0|^{p_{i0}} \cdot ... \cdot |y_r|^{p_{ir}} \cdot e^{d_i})_{i=1,...,s})$$

#### **Definition**

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. We say that the function  $f: C \to \mathbb{R}$  is **log-exp-analytically prepared** if

$$f = a \cdot |y_0|^{q_0} \cdot ... \cdot |y_r|^{q_r} \cdot e^c \cdot v((b_i \cdot |y_0|^{p_{i0}} \cdot ... \cdot |y_r|^{p_{ir}} \cdot e^{d_i})_{i=1,...,s})$$

• 
$$q_j, p_{ij} \in \mathbb{Q}$$
 for  $j \in \{0, ..., r\}$ ,

#### **Definition**

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. We say that the function  $f: C \to \mathbb{R}$  is **log-exp-analytically prepared** if

$$f = \mathbf{a} \cdot |y_0|^{q_0} \cdot ... \cdot |y_r|^{q_r} \cdot \mathbf{e}^{\mathbf{c}} \cdot v((\mathbf{b}_i \cdot |y_0|^{p_{i0}} \cdot ... \cdot |y_r|^{p_{ir}} \cdot \mathbf{e}^{d_i})_{i=1,...,s})$$

- $q_j, p_{ij} \in \mathbb{Q}$  for  $j \in \{0, ..., r\}$ ,
- a(t) and  $b_1(t), ..., b_s(t)$  are C-nice functions,

#### Definition

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. We say that the function  $f: C \to \mathbb{R}$  is **log-exp-analytically prepared** if

$$f = a \cdot |y_0|^{q_0} \cdot ... \cdot |y_r|^{q_r} \cdot e^c \cdot v((b_i \cdot |y_0|^{p_{i0}} \cdot ... \cdot |y_r|^{p_{ir}} \cdot e^{d_i})_{i=1,...,s})$$

- $q_j, p_{ij} \in \mathbb{Q}$  for  $j \in \{0, ..., r\}$ ,
- a(t) and  $b_1(t), ..., b_s(t)$  are C-nice functions,
- $(y_0, ..., y_r)$  is a logarithmic scale on C with C-nice center,

#### **Definition**

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. We say that the function  $f: C \to \mathbb{R}$  is **log-exp-analytically prepared** if

$$f = a \cdot |y_0|^{q_0} \cdot ... \cdot |y_r|^{q_r} \cdot e^c \cdot v((b_i \cdot |y_0|^{p_{i0}} \cdot ... \cdot |y_r|^{p_{ir}} \cdot e^{d_i})_{i=1,...,s})$$

- $q_j, p_{ij} \in \mathbb{Q}$  for  $j \in \{0, ..., r\}$ ,
- a(t) and  $b_1(t), ..., b_s(t)$  are C-nice functions,
- $(y_0, ..., y_r)$  is a logarithmic scale on C with C-nice center,
- v is a power series which converges on an open neighbourhood of  $[-1,1]^s$  with  $v([-1,1]^s) \subset \mathbb{R}_{>0}$

#### Definition

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. We say that the function  $f: C \to \mathbb{R}$  is **log-exp-analytically prepared** if

$$f = a \cdot |y_0|^{q_0} \cdot ... \cdot |y_r|^{q_r} \cdot e^c \cdot v((b_i \cdot |y_0|^{p_{i0}} \cdot ... \cdot |y_r|^{p_{ir}} \cdot e^{d_i})_{i=1,...,s})$$

- $q_j, p_{ij} \in \mathbb{Q}$  for  $j \in \{0, ..., r\}$ ,
- a(t) and  $b_1(t),...,b_s(t)$  are C-nice functions,
- $(y_0, ..., y_r)$  is a logarithmic scale on C with C-nice center,
- v is a power series which converges on an open neighbourhood of  $[-1,1]^s$  with  $v([-1,1]^s) \subset \mathbb{R}_{>0}$  and

$$b_i \cdot |y_0|^{p_{i0}} \cdot \ldots \cdot |y_r|^{p_{ir}} \cdot e^{d_i} \in [-1, 1],$$

#### **Definition**

Let  $C \subset \mathbb{R}^n \times \mathbb{R}$  be definable. We say that the function  $f: C \to \mathbb{R}$  is **log-exp-analytically prepared** if

$$f = a \cdot |y_0|^{q_0} \cdot ... \cdot |y_r|^{q_r} \cdot e^c \cdot v((b_i \cdot |y_0|^{p_{i0}} \cdot ... \cdot |y_r|^{p_{ir}} \cdot e^{d_i})_{i=1,...,s})$$

#### where

- $q_j, p_{ij} \in \mathbb{Q}$  for  $j \in \{0, ..., r\}$ ,
- a(t) and  $b_1(t),...,b_s(t)$  are C-nice functions,
- $(y_0, ..., y_r)$  is a logarithmic scale on C with C-nice center,
- v is a power series which converges on an open neighbourhood of  $[-1,1]^s$  with  $v([-1,1]^s)\subset \mathbb{R}_{>0}$  and

$$b_i \cdot |y_0|^{p_{i0}} \cdot ... \cdot |y_r|^{p_{ir}} \cdot e^{d_i} \in [-1, 1],$$

• c(t,x) and  $d_1(t,x),...,d_s(t,x)$  are log-exp-analytically prepared of **lower complexity** than f.

## Theorem (Opris, 2022)

Let  $X \subset \mathbb{R}^n \times \mathbb{R}$  be definable and open. Let  $f: X \to \mathbb{R}$  be restricted log-exp-analytic. Then there is a partition  $\mathcal{C}$  of X into finitely many definable cells such that  $f|_{\mathcal{C}}$  is log-exp-analytically prepared with exponentials of functions which are **locally bounded with respect to** X for every  $C \in \mathcal{C}$ .

## Theorem (Opris, 2022)

Let  $X \subset \mathbb{R}^n \times \mathbb{R}$  be definable and open. Let  $f: X \to \mathbb{R}$  be restricted log-exp-analytic. Then there is a partition  $\mathcal{C}$  of X into finitely many definable cells such that  $f|_{\mathcal{C}}$  is log-exp-analytically prepared with exponentials of functions which are **locally bounded with respect to** X for every  $C \in \mathcal{C}$ .

**This means:** For  $C \in \mathcal{C}$  we have

$$f|_{C} = a \cdot |y_0|^{q_0} \cdot ... \cdot |y_r|^{q_r} \cdot e^{\mathbf{c}} \cdot v((b_i \cdot |y_0|^{p_{i0}} \cdot ... \cdot |y_r|^{p_{ir}} \cdot e^{\mathbf{d}_i})_{i=1,...,s})$$

where  $c, d_1, ..., d_s$  are restrictions of locally bounded functions on X.

## First Result: Tamm's Theorem

Let  $X \subset \mathbb{R}^n \times \mathbb{R}^m$  be open and definable.

## First Result: Tamm's Theorem

Let  $X \subset \mathbb{R}^n \times \mathbb{R}^m$  be open and definable.

## Theorem (Opris, 2022)

Let  $f: X \to \mathbb{R}, (t, x) \mapsto f(t, x)$ , be restricted log-exp-analytic. Then there is  $N \in \mathbb{N}$  such that for all  $t \in \mathbb{R}^n$  if f(t, -) is N-times continuously differentiable at x then f(t, -) is real analytic at x.

## First Result: Tamm's Theorem

Let  $X \subset \mathbb{R}^n \times \mathbb{R}^m$  be open and definable.

## Theorem (Opris, 2022)

Let  $f: X \to \mathbb{R}$ ,  $(t, x) \mapsto f(t, x)$ , be restricted log-exp-analytic. Then there is  $N \in \mathbb{N}$  such that for all  $t \in \mathbb{R}^n$  if f(t, -) is N-times continuously differentiable at x then f(t, -) is real analytic at x.

### Example

Note that Tamm's theorem does not hold in  $\mathbb{R}_{\mathsf{an},\mathsf{exp}}$  in general. Consider

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto \left\{ egin{array}{ll} e^{-1/x}, & x > 0, \\ 0, & ext{else}. \end{array} \right.$$

Then f is infinitely often continuously differentiable at 0 but not real analytic.

## Lemma (Opris 2022)

Restricted log-exp-analytic functions are closed under taking derivatives.

## Lemma (Opris 2022)

Restricted log-exp-analytic functions are closed under taking derivatives.

## Lemma (Opris 2022)

Univariate parameterized flatness/analyticity result at zero:

## Lemma (Opris 2022)

Restricted log-exp-analytic functions are closed under taking derivatives.

## Lemma (Opris 2022)

## Univariate parameterized flatness/analyticity result at zero:

Let  $X \subset \mathbb{R}^{n+1}$  and  $f: X \to \mathbb{R}$  restricted log-exp-analytic. Then there is  $N \in \mathbb{N}$  such that for all  $t \in \pi(X)$  the following holds:

## Lemma (Opris 2022)

Restricted log-exp-analytic functions are closed under taking derivatives.

## Lemma (Opris 2022)

## Univariate parameterized flatness/analyticity result at zero:

Let  $X \subset \mathbb{R}^{n+1}$  and  $f: X \to \mathbb{R}$  restricted log-exp-analytic. Then there is  $N \in \mathbb{N}$  such that for all  $t \in \pi(X)$  the following holds:

• If f(t, -) is N-flat at zero then f(t, -) vanishes on a small interval around zero.

## Lemma (Opris 2022)

Restricted log-exp-analytic functions are closed under taking derivatives.

## Lemma (Opris 2022)

### Univariate parameterized flatness/analyticity result at zero:

Let  $X \subset \mathbb{R}^{n+1}$  and  $f: X \to \mathbb{R}$  restricted log-exp-analytic. Then there is  $N \in \mathbb{N}$  such that for all  $t \in \pi(X)$  the following holds:

- If f(t, -) is N-flat at zero then f(t, -) vanishes on a small interval around zero.
- If f(t,-) is  $C^N$  at zero then f(t,-) is real analytic at zero.

### Tamm's Theorem: Proof Sketch

### Lemma (Opris 2022)

Restricted log-exp-analytic functions are closed under taking derivatives.

### Lemma (Opris 2022)

### Univariate parameterized flatness/analyticity result at zero:

Let  $X \subset \mathbb{R}^{n+1}$  and  $f: X \to \mathbb{R}$  restricted log-exp-analytic. Then there is  $N \in \mathbb{N}$  such that for all  $t \in \pi(X)$  the following holds:

- If f(t, -) is N-flat at zero then f(t, -) vanishes on a small interval around zero.
- If f(t,-) is  $C^N$  at zero then f(t,-) is real analytic at zero.

**Finally:** Apply methods of Van den Dries (Gateaux-differentiability) to obtain Tamm's theorem.

### First Result: Tamm's Theorem

### Corollary

Let  $f: X \to \mathbb{R}$ ,  $(t, x) \mapsto f(t, x)$ , be restricted log-exp-analytic. Then the set of all  $(t, x) \in X$  such that f(t, -) is real analytic at x is definable.

### First Result: Tamm's Theorem

### Corollary

Let  $f: X \to \mathbb{R}, (t, x) \mapsto f(t, x)$ , be restricted log-exp-analytic. Then the set of all  $(t, x) \in X$  such that f(t, -) is real analytic at x is definable.

**Note:** This does also not hold for definable functions in general.

### First Result: Tamm's Theorem

### Corollary

Let  $f: X \to \mathbb{R}$ ,  $(t, x) \mapsto f(t, x)$ , be restricted log-exp-analytic. Then the set of all  $(t, x) \in X$  such that f(t, -) is real analytic at x is definable.

**Note:** This does also not hold for definable functions in general.

### Example

The definable function

$$h: \mathbb{R}^2 \to \mathbb{R}, \ (t,x) \mapsto \left\{ \begin{array}{ll} e^{2t\log(|x|)}, & x > 0, \\ 0, & x = 0, \end{array} \right.$$

satisfies  $\{t \in \mathbb{R} \mid h(t, -) \text{ is real analytic at } 0\} = \mathbb{Z}$ .

### Theorem (Opris, 2022)

Let  $X \subset \mathbb{R}^m$  be open and let  $f: X \to \mathbb{R}$  be a real analytic restricted log-exp-analytic function. Then f has a global complexification which is again restricted log-exp-analytic.

### Theorem (Opris, 2022)

Let  $X \subset \mathbb{R}^m$  be open and let  $f: X \to \mathbb{R}$  be a real analytic restricted log-exp-analytic function. Then f has a global complexification which is again restricted log-exp-analytic.

### Ideas for the proof:

### Theorem (Opris, 2022)

Let  $X \subset \mathbb{R}^m$  be open and let  $f: X \to \mathbb{R}$  be a real analytic restricted log-exp-analytic function. Then f has a global complexification which is again restricted log-exp-analytic.

#### Ideas for the proof:

Do the same procedure as in the globally subanalytic case:

### Theorem (Opris, 2022)

Let  $X \subset \mathbb{R}^m$  be open and let  $f: X \to \mathbb{R}$  be a real analytic restricted log-exp-analytic function. Then f has a global complexification which is again restricted log-exp-analytic.

#### Ideas for the proof:

Do the same procedure as in the globally subanalytic case:

Use the preparation theorem for restricted log-exp-analytic functions from above.









• — с









Additional challenges compared to the  $\mathbb{R}_{an}$  case:



#### Additional challenges compared to the $\mathbb{R}_{an}$ case:

• Use inductive arguments for computing the holomorphic extension



#### Additional challenges compared to the $\mathbb{R}_{an}$ case:

- Use inductive arguments for computing the holomorphic extension
- Cauchy's integral for gluing: Much harder to solve



#### Additional challenges compared to the $\mathbb{R}_{an}$ case:

- Use inductive arguments for computing the holomorphic extension
- Cauchy's integral for gluing: Much harder to solve
- Gluing: Preserve restricted log-exp-analyticity (exponentials + C-heirs!)



#### Additional challenges compared to the $\mathbb{R}_{an}$ case:

- Use inductive arguments for computing the holomorphic extension
- Cauchy's integral for gluing: Much harder to solve
- Gluing: Preserve restricted log-exp-analyticity (exponentials + C-heirs!)

There is also a parametric version of this result.

**Further notation:** 

#### **Further notation:**

For  $X \subset \mathbb{R}^n \times \mathbb{R}^m$  and  $t \in \mathbb{R}^n$  let  $X_t := \{ y \in \mathbb{R}^m \mid (t, y) \in C \}$ .

#### **Further notation:**

For  $X \subset \mathbb{R}^n \times \mathbb{R}^m$  and  $t \in \mathbb{R}^n$  let  $X_t := \{ y \in \mathbb{R}^m \mid (t, y) \in C \}$ .

For  $f: X \to \mathbb{R}$  and  $t \in \mathbb{R}^n$  let  $f_t: X_t \to \mathbb{R}, y \mapsto f(t, y)$ .

#### **Further notation:**

For 
$$X \subset \mathbb{R}^n \times \mathbb{R}^m$$
 and  $t \in \mathbb{R}^n$  let  $X_t := \{ y \in \mathbb{R}^m \mid (t, y) \in C \}$ .

For 
$$f: X \to \mathbb{R}$$
 and  $t \in \mathbb{R}^n$  let  $f_t: X_t \to \mathbb{R}, y \mapsto f(t, y)$ .

The function  $f: X \to \mathbb{R}$  where  $X_t$  is open for each  $t \in \mathbb{R}^n$  is called **restricted log-exp-analytic in** y if f is the composition of log-analytic functions and exponentials of functions g where  $g_t$  is locally bounded for every  $t \in \mathbb{R}^n$ .

#### **Further notation:**

For  $X \subset \mathbb{R}^n \times \mathbb{R}^m$  and  $t \in \mathbb{R}^n$  let  $X_t := \{ y \in \mathbb{R}^m \mid (t, y) \in C \}$ .

For  $f: X \to \mathbb{R}$  and  $t \in \mathbb{R}^n$  let  $f_t: X_t \to \mathbb{R}, y \mapsto f(t, y)$ .

The function  $f: X \to \mathbb{R}$  where  $X_t$  is open for each  $t \in \mathbb{R}^n$  is called **restricted log-exp-analytic** in y if f is the composition of log-analytic functions and exponentials of functions g where  $g_t$  is locally bounded for every  $t \in \mathbb{R}^n$ .

### Theorem (Opris, 2022)

Let  $X \subset \mathbb{R}^n \times \mathbb{R}^m$  be definable such that  $X_t$  is open for every  $t \in \mathbb{R}^n$ . Let  $f: X \to \mathbb{R}, (t, y) \mapsto f(t, y)$ , be restricted log-exp-analytic and real analytic in y. Then there is a definable  $Z \subset \mathbb{R}^n \times \mathbb{C}^m$  with  $X \subset Z$  where  $Z_t$  is open for every  $t \in \mathbb{R}^n$  and  $F: Z \to \mathbb{C}, (t, z) \mapsto F(t, z)$ , with  $F|_X = f$  which is restricted log-exp-analytic in z and  $F_t$  is holomorphic for every  $t \in \mathbb{R}^n$ .

 Does a real analytic log-analytic function have a global complexification which is again log-analytic?

- Does a real analytic log-analytic function have a global complexification which is again log-analytic?
  - ▶ It may be true simply by the observation that a log-analytic function extends piecewise to a holomorphic log-analytic function.

- Does a real analytic log-analytic function have a global complexification which is again log-analytic?
  - ▶ It may be true simply by the observation that a log-analytic function extends piecewise to a holomorphic log-analytic function.
  - One needs a preparation theorem for log-analytic functions with log-analytic data only.

- Does a real analytic log-analytic function have a global complexification which is again log-analytic?
  - ▶ It may be true simply by the observation that a log-analytic function extends piecewise to a holomorphic log-analytic function.
  - One needs a preparation theorem for log-analytic functions with log-analytic data only.
- Is every real analytic definable function restricted log-exp-analytic?

- Does a real analytic log-analytic function have a global complexification which is again log-analytic?
  - ▶ It may be true simply by the observation that a log-analytic function extends piecewise to a holomorphic log-analytic function.
  - One needs a preparation theorem for log-analytic functions with log-analytic data only.
- Is every real analytic definable function restricted log-exp-analytic?
  - It may be true outgoing from the following observation: Consider the example

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto \left\{ \begin{array}{ll} e^{-1/x}, & x > 0, \\ 0, & \text{else.} \end{array} \right.$$

- Does a real analytic log-analytic function have a global complexification which is again log-analytic?
  - ▶ It may be true simply by the observation that a log-analytic function extends piecewise to a holomorphic log-analytic function.
  - ▶ One needs a preparation theorem for log-analytic functions with log-analytic data only.
- Is every real analytic definable function restricted log-exp-analytic?
  - ▶ It may be true outgoing from the following observation: Consider the example

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto \left\{ \begin{array}{ll} e^{-1/x}, & x > 0, \\ 0, & \text{else.} \end{array} \right.$$

• f is flat at zero, but not the zero function.

- Does a real analytic log-analytic function have a global complexification which is again log-analytic?
  - ▶ It may be true simply by the observation that a log-analytic function extends piecewise to a holomorphic log-analytic function.
  - One needs a preparation theorem for log-analytic functions with log-analytic data only.
- Is every real analytic definable function restricted log-exp-analytic?
  - It may be true outgoing from the following observation: Consider the example

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto \left\{ \begin{array}{ll} e^{-1/x}, & x > 0, \\ 0, & \text{else.} \end{array} \right.$$

- f is flat at zero, but not the zero function.
- ▶ This feature does not occur in the case of real analytic functions.

• Preparation Theorems for  $\mathbb{R}_{an,exp}$  in general: Andre Opris, On preparation theorems of  $\mathbb{R}_{an,exp}$ -definable functions, Journal of Logic and Analysis, 2023

- Preparation Theorems for  $\mathbb{R}_{an,exp}$  in general: Andre Opris, On preparation theorems of  $\mathbb{R}_{an,exp}$ -definable functions, Journal of Logic and Analysis, 2023
- Restricted log-exp-analytic functions and Tamm's theorem:
   Andre Opris, Restricted log-exp-analytic functions and some differentiability results, Illinois Journal of Mathematics, 2022

- Preparation Theorems for  $\mathbb{R}_{an,exp}$  in general: Andre Opris, On preparation theorems of  $\mathbb{R}_{an,exp}$ -definable functions, Journal of Logic and Analysis, 2023
- Restricted log-exp-analytic functions and Tamm's theorem:
   Andre Opris, Restricted log-exp-analytic functions and some differentiability results, Illinois Journal of Mathematics, 2022
- Global Complexification and all of the above: Andre Opris, Holomorphic Extensions in the O-Minimal Structure  $\mathbb{R}_{an,exp}$ , Doctoral Thesis, Opus 04, University of Passau, Germany, 2022

- Preparation Theorems for  $\mathbb{R}_{an,exp}$  in general: Andre Opris, On preparation theorems of  $\mathbb{R}_{an,exp}$ -definable functions, Journal of Logic and Analysis, 2023
- Restricted log-exp-analytic functions and Tamm's theorem:
   Andre Opris, Restricted log-exp-analytic functions and some differentiability results, Illinois Journal of Mathematics, 2022
- Global Complexification and all of the above: Andre Opris, Holomorphic Extensions in the O-Minimal Structure  $\mathbb{R}_{an,exp}$ , Doctoral Thesis, Opus 04, University of Passau, Germany, 2022

Additional publications/works:

- Preparation Theorems for  $\mathbb{R}_{an,exp}$  in general: Andre Opris, On preparation theorems of  $\mathbb{R}_{an,exp}$ -definable functions, Journal of Logic and Analysis, 2023
- Restricted log-exp-analytic functions and Tamm's theorem:
   Andre Opris, Restricted log-exp-analytic functions and some differentiability results, Illinois Journal of Mathematics, 2022
- Global Complexification and all of the above: Andre Opris, Holomorphic Extensions in the O-Minimal Structure  $\mathbb{R}_{an,exp}$ , Doctoral Thesis, Opus 04, University of Passau, Germany, 2022

#### Additional publications/works:

 Tobias Kaiser, Andre Opris, Differentiability properties of log-analytic functions, Rocky Mountain Journal of Mathematics, 2022

- Preparation Theorems for  $\mathbb{R}_{an,exp}$  in general: Andre Opris, On preparation theorems of  $\mathbb{R}_{an,exp}$ -definable functions, Journal of Logic and Analysis, 2023
- Restricted log-exp-analytic functions and Tamm's theorem:
   Andre Opris, Restricted log-exp-analytic functions and some differentiability results, Illinois Journal of Mathematics, 2022
- Global Complexification and all of the above: Andre Opris, Holomorphic Extensions in the O-Minimal Structure  $\mathbb{R}_{an,exp}$ , Doctoral Thesis, Opus 04, University of Passau, Germany, 2022

#### Additional publications/works:

- Tobias Kaiser, Andre Opris, Differentiability properties of log-analytic functions, Rocky Mountain Journal of Mathematics, 2022
- Andre Opris, *Restricted log-exp-analytic power functions*, Annales Polonici Mathematici, 2023

- Preparation Theorems for R<sub>an,exp</sub> in general:
   Andre Opris, On preparation theorems of R<sub>an,exp</sub>-definable functions,
   Journal of Logic and Analysis, 2023
- Restricted log-exp-analytic functions and Tamm's theorem:
   Andre Opris, Restricted log-exp-analytic functions and some differentiability results, Illinois Journal of Mathematics, 2022
- Global Complexification and all of the above: Andre Opris, Holomorphic Extensions in the O-Minimal Structure  $\mathbb{R}_{an,exp}$ , Doctoral Thesis, Opus 04, University of Passau, Germany, 2022

#### Additional publications/works:

- Tobias Kaiser, Andre Opris, Differentiability properties of log-analytic functions, Rocky Mountain Journal of Mathematics, 2022
- Andre Opris, Restricted log-exp-analytic power functions, Annales Polonici Mathematici, 2023
- Andre Opris, Global complexification of real analytic restricted log-exp-analytic functions, arXiv:2205.12011, 2022