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Structures

Definition

For n ∈ N let Mn be a set of subsets of Rn. Then (Mn)n∈N is a structure
on R if the following holds.

(S1) Mn is a Boolean algebra of subsets of Rn.

(S2) If A ∈ Mn and B ∈ Mm then A× B ∈ Mn+m.

(S3) If A ∈ Mn+1 then πn(A) ∈ Mn where
πn : Rn+1 → Rn, (x1, ..., xn+1) 7→ (x1, ..., xn), denotes the projection
on the first n coordinates.

(S4) Mn contains the semialgebraic subsets of Rn.
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O-minimal structures and definability

Definition

The structure M = (Mn)n∈N on R is called o-minimal if additionally the
following holds.

(O) The sets in M1 are exactly the finite unions of intervals and points.

Definition

Let M = (Mn)n∈N be an o-minimal structure on R. We say the following.

A ⊂ Rn is M-definable if A ∈ Mn.

Let B ⊂ Rn. A function f : B → Rm is M-definable if its graph
{(x , f (x)) | x ∈ B} is M-definable.
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Important o-minimal structures on the real field

R: It consists of all semialgebraic sets.

Ran: The structure generated by the graphs of restricted analytic
functions.

A function f : Rn → R is called restricted analytic if

f (x) =

{
p(x), if x ∈ [−1, 1]n,
0 else ,

where p(x) is a real power series which converges on an open
neighbourhood of [−1, 1]n. The definable sets and functions are the
so called globally subanalytic ones.

Rexp: The structure generated by the graph of the global real
exponential function.

Ran,exp: The structure generated by all globally subanalytic sets and
the graph of the global real exponential function.
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M denotes a fixed o-minimal structure on the reals.
Definable means M-definable.
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Complexification

We identify C with R2 via x + iy 7→ (x , y). A set Z ⊂ Cm is definable if it
is definable considered as a subset of R2m.

Definition

We say that M has complexification if every real analytic definable
function has locally a definable holomorphic extension.
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Complexification

Example

Let M be an o-minimal expansion of Ran (e.g. Ran or Ran,exp). Then
M has complexification.

Rexp does not have complexification:

▶ Consider the Rexp-definable function f : R → R, x 7→ exp(x).
▶ Consider

F : C → C, z 7→ ez = ex(cos(y) + i sin(y))

which is holomorpic where z := x + iy .
▶ Let x ∈ R and let V be an open ball in C around x .
▶ By the identity theorem we see that F |V is the unique holomorphic

extension of f |V∩R.
▶ F |V is not Rexp-definable (Bianconi, 1997).
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Global complexification

Definition

We say that M has global complexification if every real analytic
definable function has a definable holomorphic extension.

Example

Rexp does not have global complexification.
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Results on global complexification

Theorem (T. Kaiser, 2016)

The following holds.

(1) The o-minimal structure R has global complexification.

(2) The o-minimal structure Ran has global complexification.
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Results on global complexification

Ideas for the proof of (2):

By a preparation theorem of Lion and Rolin a globally subanalytic function
can be piecewise written as

a(t) · |x − θ(t)|q · v
(
(bi (t)|x − θ(t)|pi )i=1,...,s

)
where

q, p1, ..., ps ∈ Q,

a(t), θ(t) and b1(t), ..., bs(t) are globally subanalytic which depend
only on t,

v is a power series which converges absolutely on an open
neighbourhood of [−1, 1]s with v([−1, 1]s) ⊂ R>0

and

bi (t)|x − θ(t)|pi ∈ [−1, 1].
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Results on global complexification

Prepared function can be piecewise extended in x as

F (t, z) = a(t) · (z − θ(t))q · V
(
(bi (t)(z − θ(t))pi )i=1,...,s

)
where

z is complex variable, V is complex convergent power series
extending v

.

Domain:
A = {(t, z) ∈ π(C )× C | α(t) < |z − θ(t)| < ω(t), }\]−∞, θ(t)[
for globally subanalytic α, ω : π(C ) → R+ where α < ω.

Then do an induction on the number of variables.
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∆ := {(t, s, z) ∈ π(C )× R>0 × C | α(t) < s < ω(t), z ∈ B(θ(t), s/2)}
and

G : ∆ → C, (t, z , s) 7→
∫
∂B(θ(t),s)

F (t, ξ)

ξ − z
dξ.

Definable in Ran!

Finally: Do an induction on the number of variables.
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F (t, ξ)

ξ − z
dξ.

Definable in Ran!

Finally: Do an induction on the number of variables.
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Question:

Does Ran,exp have global complexification?
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Further Notation

From now on definable means Ran,exp-definable.

Terms are Lan(exp, log)-terms where Lan(exp, log) denotes the
language of ordered rings with additional symbols for all restricted
analytic functions, the global exponential and global logarithm.

Examples: x2 and exp(x · y2 · log(z)) are terms.
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The univariate case

Theorem (L. van den Dries, A. Macintyre and D. Marker, 1994)

Let f : Rn → R be definable. Then f is piecewise given by terms.

This means: Definable functions are piecewise compositions of globally
subanalytic functions, the global real logarithm and the global real
exponential. So we call them also log-exp-analytic.

Basic observations in Ran,exp:

log : R>0 → R has a global complexification

Log : C \ {x ∈ R | x ≤ 0} → C, z 7→ log(|z |) + i arg(z).

exp : R → R has a global complexification

Exp : {z ∈ C | |Im(z)| < π} → C, (x + iy) 7→ ex(cos(y) + i sin(y)).
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The univariate case

Consequence:

Theorem (T. Kaiser, 2016)

Let U ⊂ R be open. A definable real analytic function f : U → R has a
global complexification, i.e. a definable holomorphic extension.
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My contribution as a PhD student

I considered definable real analytic functions in more than one variable.
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Log-Analytic Functions

Definition

We call a function f : X → R log-analytic if f is piecewise the
composition of globally subanalytic functions and the global logarithm.

Example

The function

f : R → R, x 7→ log(1 + x2 + |x |),

is log-analytic.
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The multivariate case

Definition

Let X ⊂ Rn be open. We call a function f : X → R restricted
log-exp-analytic if f is the composition of log-analytic functions and
exponentials of locally bounded functions.

Example

The definable function

h : R → R, x 7→
{

exp(−1/x), x > 0,
0, x ≤ 0,

is not restricted log-exp-analytic, but h|R>0 is.

We see

globally subanalytic

⊂ log-analytic ⊂ restricted log-exp-analytic ⊂
log-exp-analytic = definable

.
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Restricted Log-Exp-Analytic Functions

Results: I established some differentiability results and global
complexification for the big class of restricted log-exp-analytic functions.

Strategy: Determine a suitable preparation theorem for a restricted
log-exp-analytic function as it has been done for globally subanalytic
functions.
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A Preparation Theorem for Log-Analytic Functions

Definition (Lion/Rolin 1997)

Let C ⊂ Rn × R be definable. A tuple (y0, ..., yr ) of functions on C is
called logarithmic scale on C with center Θ := (Θ0, ...,Θr ) if the
following holds:

yj > 0 or yj < 0,

Θj(t) is a definable function on π(C ),

for (t, x) ∈ C we have y0(t, x) = x −Θ0(t),

for (t, x) ∈ C we have yj(t, x) = log(|yj−1(t, x)|)−Θj(t)
(j ∈ {1, ..., r}).
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A Preparation Theorem for Log-Analytic Functions

Definition

Let C ⊂ Rn × R be definable. Let g : C → R be a function. We say that
g is log-analytically prepared if

g = a · |y0|q0 · ... · |yr |qr · v
(
(bi · |y0|pi0 · ... · |yr |pir )i=1,...,s

)

where

qj , pij ∈ Q for j ∈ {0, ..., r},
a(t) and b1(t), ..., bs(t) are definable functions on π(C ),

(y0, ..., yr ) is a logarithmic scale on C ,

v is a power series which converges on an open neighbourhood of
[−1, 1]s with v([−1, 1]s) ⊂ R>0

and

bi · |y0|pi0 · ... · |yr |pir ∈ [−1, 1].
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A Preparation Theorem for Log-Analytic Functions

Theorem (Lion/Rolin, 1998)

Let X ⊂ Rn × R be definable. Let f : X → R be log-analytic. Then there
is a partition C of X into finitely many definable cells such that f |C is
log-analytically prepared for C ∈ C.

Remark (Kaiser/Opris, 2022)

In general the partition C cannot be chosen in this way that f |C is
log-analytically prepared with log-analytic data for every C ∈ C.

Consequence: Hard to show that log-analytic functions are closed under
global complexification.
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A Preparation Theorem for Log-Analytic Functions

Definition

Let C ⊂ Rn × R be definable. We call g : π(C ) → R C -heir if there is a
logarithmic scale (ỹ0, ..., ỹr ) with center (Θ̃0, ..., Θ̃r ) on C and
l ∈ {0, ..., r} such that g = exp(Θ̃l).

Definition

Let C ⊂ Rn × R be definable. We call g : π(C ) → R C -nice if g is the
composition of log-analytic functions and C -heirs.

Remark

Let C ⊂ Rn × R be open. A C -nice function is restricted log-exp-analytic
since the center of every logarithmic scale on C is locally bounded.
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A Preparation Theorem for Log-Analytic Functions

Theorem (Opris, 2023)

Let X ⊂ Rn × R be definable. Let f : X → R be log-analytic. Then there
is a partition C of X into finitely many definable cells such that f |C is
log-analytically prepared with C -nice data for C ∈ C.

This means: For C ∈ C we have

f |C = a · |y0|q0 · ... · |yr |qr · v
(
(bi · |y0|pi0 · ... · |yr |pir )i=1,...,s

)
where a, b1, ..., bs and the center (Θ0, ...,Θr ) of (y0, ..., yr ) are C -nice.

Remark, Kaiser/Opris 2022

On simple cells which are cells of the form

C := {(t, x) ∈ D × R | 0 < x < d(t)}

where D ⊂ Rn is a cell and d : D → R+ is definable, Θ = 0 is satisfied.

Consequence: Log-Analytic functions are closed under differentiation.
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A Preparation Theorem for Log-Exp-Analytic Functions

Definition

Let C ⊂ Rn × R be definable. We say that the function f : C → R is
log-exp-analytically prepared if

f = a · |y0|q0 · ... · |yr |qr · ec · v
(
(bi · |y0|pi0 · ... · |yr |pir · edi )i=1,...,s

)
where

qj , pij ∈ Q for j ∈ {0, ..., r},
a(t) and b1(t), ..., bs(t) are C -nice functions,

(y0, ..., yr ) is a logarithmic scale on C with C -nice center,

v is a power series which converges on an open neighbourhood of
[−1, 1]s with v([−1, 1]s) ⊂ R>0

and

bi · |y0|pi0 · ... · |yr |pir · edi ∈ [−1, 1],

c(t, x) and d1(t, x),...,ds(t, x) are log-exp-analytically prepared of
lower complexity than f .
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A Preparation Theorem for Restricted Log-Exp-Analytic
Functions

Theorem (Opris, 2022)

Let X ⊂ Rn × R be definable and open. Let f : X → R be restricted
log-exp-analytic. Then there is a partition C of X into finitely many
definable cells such that f |C is log-exp-analytically prepared with
exponentials of functions which are locally bounded with respect to X
for every C ∈ C.

This means: For C ∈ C we have

f |C = a · |y0|q0 · ... · |yr |qr · ec · v
(
(bi · |y0|pi0 · ... · |yr |pir · edi )i=1,...,s

)
where c, d1, ..., ds are restrictions of locally bounded functions on X .
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First Result: Tamm’s Theorem

Let X ⊂ Rn × Rm be open and definable.

Theorem (Opris, 2022)

Let f : X → R, (t, x) 7→ f (t, x), be restricted log-exp-analytic. Then there
is N ∈ N such that for all t ∈ Rn if f (t,−) is N-times continuously
differentiable at x then f (t,−) is real analytic at x.

Example

Note that Tamm’s theorem does not hold in Ran,exp in general. Consider

f : R → R, x 7→
{

e−1/x , x > 0,
0, else.

Then f is infinitely often continuously differentiable at 0 but not real
analytic.
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Tamm’s Theorem: Proof Sketch

Lemma (Opris 2022)

Restricted log-exp-analytic functions are closed under taking derivatives.

Lemma (Opris 2022)

Univariate parameterized flatness/analyticity result at zero:
Let X ⊂ Rn+1 and f : X → R restricted log-exp-analytic. Then there is
N ∈ N such that for all t ∈ π(X ) the following holds:

If f (t,−) is N-flat at zero then f (t,−) vanishes on a small interval
around zero.

If f (t,−) is CN at zero then f (t,−) is real analytic at zero.

Finally: Apply methods of Van den Dries (Gateaux-differentiability) to
obtain Tamm’s theorem.
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First Result: Tamm’s Theorem

Corollary

Let f : X → R, (t, x) 7→ f (t, x), be restricted log-exp-analytic. Then the
set of all (t, x) ∈ X such that f (t,−) is real analytic at x is definable.

Note: This does also not hold for definable functions in general.

Example

The definable function

h : R2 → R, (t, x) 7→
{

e2t log(|x |), x > 0,
0, x = 0,

satisfies {t ∈ R | h(t,−) is real analytic at 0} = Z.
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Second Result: Global Complexification

Theorem (Opris, 2022)

Let X ⊂ Rm be open and let f : X → R be a real analytic restricted
log-exp-analytic function. Then f has a global complexification which is
again restricted log-exp-analytic.

Ideas for the proof:

Do the same procedure as in the globally subanalytic case:

Use the preparation theorem for restricted log-exp-analytic functions from
above.
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Second Result: Global Complexification

There is also a parametric version of this result.
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Second Result: Global Complexification

Additional challenges compared to the Ran case:

Use inductive arguments for computing the holomorphic extension
Cauchy’s integral for gluing: Much harder to solve
Gluing: Preserve restricted log-exp-analyticity (exponentials +
C -heirs!)

There is also a parametric version of this result.
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Second Result: Global Complexification

Further notation:

For X ⊂ Rn × Rm and t ∈ Rn let Xt := {y ∈ Rm | (t, y) ∈ C}.

For f : X → R and t ∈ Rn let ft : Xt → R, y 7→ f (t, y).

The function f : X → R where Xt is open for each t ∈ Rn is called
restricted log-exp-analytic in y if f is the composition of log-analytic
functions and exponentials of functions g where gt is locally bounded for
every t ∈ Rn.

Theorem (Opris, 2022)

Let X ⊂ Rn × Rm be definable such that Xt is open for every t ∈ Rn. Let
f : X → R, (t, y) 7→ f (t, y), be restricted log-exp-analytic and real analytic
in y . Then there is a definable Z ⊂ Rn ×Cm with X ⊂ Z where Zt is open
for every t ∈ Rn and F : Z → C, (t, z) 7→ F (t, z), with F |X = f which is
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Open questions
Does a real analytic log-analytic function have a global
complexification which is again log-analytic?

▶ It may be true simply by the observation that a log-analytic function
extends piecewise to a holomorphic log-analytic function.

▶ One needs a preparation theorem for log-analytic functions with
log-analytic data only.

Is every real analytic definable function restricted log-exp-analytic?

▶ It may be true outgoing from the following observation: Consider the
example

f : R → R, x 7→
{

e−1/x , x > 0,
0, else.

▶ f is flat at zero, but not the zero function.
▶ This feature does not occur in the case of real analytic functions.
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