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Whitney’s extension problem

Problem WEPn,m [Whitney 1934]

How can one decide if a function f : X → R, X ⊆ Rn compact, is the

restriction of a Cm function F : Rn → R?

History

• Whitney’s classical (jet) extension theorem [Whitney 1934]

• WEP1,m ✓, in terms of divided differences [Whitney 1934]

|f [Y ] diamY | → 0 as Y → x for all (m + 2)-point sets Y ⊆ X and x ∈ X

• WEPn,1 ✓ [Glaeser 1958]

• Partial results by [Brudnyi, Shvartsman, Zobin 1980s and 1990s]

• WEPn,m for subanalytic X with loss of regularity ✓

[Bierstone–Milman–Paw lucki 2003]

• WEPn,m ✓ [Fefferman 2006]
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Fefferman’s solution

Bundles

For each x ∈ X let H(x) ⊆ Pm
n = R[X1, . . . , Xn]≤m be empty or an affine

subspace (more precisely, a coset of an ideal w.r.t. jet multiplication). In that

case, H(X) := (H(x))x∈X is called a bundle. A section of H(X) is a

function F ∈ Cm(Rn) such that Jm
x F ∈ H(x) for all x ∈ X.

For example, H0(x) := {P ∈ Pm
n : P (x) = f(x)}, x ∈ X, defines a bundle

H0(X), and f admits a Cm extension iff there exists a section of H0(X).

Glaeser refinement

Given H(X), define its Glaeser refinement H̃(X): fix a large integer

k = k(m,n). For x0 ∈ X and P0 ∈ H(x0), we have P0 ∈ H̃(x0) iff

∀ε > 0 ∃δ > 0 ∀x1, . . . , xk ∈ X ∩ B(x0, δ) ∃P1, . . . , Pk with Pj ∈ H(xj) and

|∂α(Pi − Pj)(xj)| ≤ ε |xi − xj |m−|α| for |α| ≤ m, 0 ≤ i, j ≤ k.

H̃(X) is a bundle. Each section F of H(X) is also a section of H̃(X).

We get a sequence of bundles H0(X) ⊇ H1(X) ⊇ · · · which stabilies:

Hℓ(X) = H2 dimPm
n +1(X) =: H∗(X) for ℓ ≥ 2 dimPm

n + 1 = 2
(
n+m
m

)
+ 1.
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Fefferman’s solution, II

Theorem [Fefferman 2006]

f : X → R extends to a Cm function on Rn iff H∗(x) ̸= ∅ for all x ∈ X.

In that case, given x0 ∈ X and P0 ∈ Pm
n , one has P0 ∈ H∗(x0) iff there is

F ∈ Cm(Rn) with F |X = f and Jm
x0
F = P0.

Theorem [Fefferman 2007]

There is a linear bounded extension operator T : Cm(Rn)|X → Cm(Rn). The

norm of T is bounded by a constant depending only on m and n.

(Cm means globally bounded in all derivatives.)

Finiteness principle [Fefferman 2006]

There exist k = k(m,n) and C = C(m,n) such that the following holds.

Suppose that ∀Y ⊆ X, #Y ≤ k, there is an extension FY ∈ Cm(Rn) of f |Y
with ∥FY ∥Cm(Rn) ≤ 1. Then there is an extension F ∈ Cm(Rn) of f with

∥F∥Cm(Rn) ≤ C.

One can take k = 2dimPm
n . [Bierstone–Milman 2007]
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The semialgebraic Whitney extension problem

Semialgebraic sets and functions

The semialgebraic subsets of Rn are finite unions of sets of the form

{x ∈ Rn : P (x) = 0, Q1(x) > 0, . . . , Qℓ(x) > 0}, where ℓ ∈ N and

P,Q1, . . . , Qℓ ∈ R[X1, . . . , Xn]. A map f : Rn ⊇ S → Rk is called

semialgebraic if its graph is semialgebraic.

Problem SWEPn,m [Bierstone–Milman 2009]

Given a semialgebraic function f : X → R, X ⊆ Rn compact, that has a Cm

extension to Rn, does f have a semialgebraic Cm extension to Rn?

Known results

• SWEPn,1 ✓ [Aschenbrenner–Thamrongthanyalak 2019]; in arbitrary

o-minimal expansions of real closed fields, based on a definable version of

Michael’s selection theorem.

• SWEP2,m ✓ [Fefferman–Luli 2022]

• SWEPn,m with loss of regularity ✓ [Bierstone–Campesato–Milman 2021]; in

o-minimal expansions of the real field by restricted quasianalytic functions.
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O-minimal structures

O-minimal expansions of the real field

This is a family S = (Sn)n≥1, where Sn ⊆ P(Rn) such that

• Sn is a boolean algebra with respect to the usual set-theoretic operations,

• Sn contains all semialgebraic subsets of Rn,

• S is stable by cartesian products and linear projections,

• each S ∈ S1 has only finitely many connected components.

Sets in S are called definable. Maps are called definable if so is their graph.

Model-theoretic definition

A structure (R,−,+, ·, <, 0, 1, . . .) is o-minimal if every X ⊆ R given by a

first-order formula of the structure is a finite union of intervals and points.
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Examples & Properties

Examples

• Semialgebraic sets: Rsa = (R,−,+, ·, <, 0, 1) [Tarski 1930]

• Globally subanalytic sets: Ran := (Rsa, restricted analytic functions)

[Gabrielov 1968]

• Rexp := (Rsa, exp) [Wilkie 1991]

• Ran,exp := (Ran, exp) [van den Dries–Miller 1994]

Some properties

• Finitely many connected components which again are definable.

• Monotonicity theorem, cell decomposition theorem, etc.

• Stability under composition, implicit and inverse functions.

• Derivatives of definable functions are definable, but not antiderivatives.

• Miller’s dichotomy.
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Cm,ω Whitney’s extension problem

Theorem (short version) [Parusiński–R 2023]

Definable WEP (in particular SWEP) of class C1,ω ✓

Theorem (Finiteness principle for Cm,ω) [Fefferman 2005]

Given m,n ≥ 1, there exist k = k(m,n) and C = C(m,n) such that the

following holds. Let ω be a modulus of continuity, X ⊆ Rn, and f : X → R.
If for all Y ⊆ X, #Y ≤ k, there is FY ∈ Cm,ω(Rn) such that FY = f on Y

and ∥FY ∥Cm,ω(Rn) ≤ 1, then there exists F ∈ Cm,ω(Rn) such that F = f on

X and ∥F∥Cm,ω(Rn) ≤ C.

Remarks

• One can take k = 2dimPm
n . [Bierstone–Milman 2007], [Shvartsman 2008]

• For m = 1 this is due to [Brudnyi–Shvartsman 2001] with the optimal

k = 3 · 2n−1.

• A variant of this result is crucial for Fefferman’s solution of WEPn,m.
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Definable WEP (in particular SWEP) of class C1,ω ✓

Theorem (Finiteness principle for Cm,ω) [Fefferman 2005]

Given m,n ≥ 1, there exist k = k(m,n) and C = C(m,n) such that the

following holds. Let ω be a modulus of continuity, X ⊆ Rn, and f : X → R.
If for all Y ⊆ X, #Y ≤ k, there is FY ∈ Cm,ω(Rn) such that FY = f on Y

and ∥FY ∥Cm,ω(Rn) ≤ 1, then there exists F ∈ Cm,ω(Rn) such that F = f on

X and ∥F∥Cm,ω(Rn) ≤ C.

Remarks

• One can take k = 2dimPm
n . [Bierstone–Milman 2007], [Shvartsman 2008]

• For m = 1 this is due to [Brudnyi–Shvartsman 2001] with the optimal

k = 3 · 2n−1.

• A variant of this result is crucial for Fefferman’s solution of WEPn,m.

10



Cm,ω Whitney’s extension problem

Theorem (short version) [Parusiński–R 2023]
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• A variant of this result is crucial for Fefferman’s solution of WEPn,m.
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Notation & Definitions

Terminology

• Fix an o-minimal expansion of the real field; “definable” always refers to it.

• A modulus of continuity is a positive, continuous, increasing, concave

function ω : [0,∞) → [0,∞) with ω(0) = 0.

• Function spaces:

Cm,ω(Rn) := {f ∈ Cm(Rn) : |f (α)(x)| ≲ 1, for |α| ≤ m, x ∈ Rn,

|f (α)(x)− f (α)(y)| ≲ ω(|x− y|), for |α| = m, x, y ∈ Rn}

Cm,ω
def (Rn) := {f ∈ Cm,ω(Rn) : f definable}

Cm,ω(Rn)|X := {f : X → R : ∃F ∈ Cm,ω(Rn), F |X = f}

Cm,ω
def (Rn)|X := {f : X → R : ∃F ∈ Cm,ω

def (Rn), F |X = f}

RX
def := {f : X → R : f definable}

All spaces are equipped with their natural norms.
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Definable C1,ω solution

Theorem A [Parusiński–R 2023]

Let ω be a definable modulus of continuity (e.g. any tα with α ∈ (0, 1] ∩Q),

f : X → R definable, X ⊆ Rn closed. TFAE:

1. f extends to a definable C1,ω function on Rn.

2. f extends to a C1,ω function on Rn.

3. For all Y ⊆ X, #Y ≤ 3 · 2n−1 there is FY ∈ C1,ω(Rn) such that

FY |Y = f |Y and supY ∥FY ∥C1,ω(Rn) < ∞. [Brudnyi–Shvartsman 2001]

That means

RX
def ∩ C1,ω(Rn)|X = C1,ω

def (R
n)|X . (⋆)

Boundedness: a subset of (⋆) is bounded in C1,ω(Rn)|X iff it is bounded in

C1,ω
def (R

n)|X .

In the Lipschitz case ω(t) = t, for compact definable X:

∥f∥
C

1,1
def

(Rn)|X
≈n ∥f∥C1,1(Rn)|X .
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Let ω be a definable modulus of continuity (e.g. any tα with α ∈ (0, 1] ∩Q),

f : X → R definable, X ⊆ Rn closed. TFAE:

1. f extends to a definable C1,ω function on Rn.

2. f extends to a C1,ω function on Rn.

3. For all Y ⊆ X, #Y ≤ 3 · 2n−1 there is FY ∈ C1,ω(Rn) such that

FY |Y = f |Y and supY ∥FY ∥C1,ω(Rn) < ∞. [Brudnyi–Shvartsman 2001]

That means

RX
def ∩ C1,ω(Rn)|X = C1,ω

def (R
n)|X . (⋆)

Boundedness: a subset of (⋆) is bounded in C1,ω(Rn)|X iff it is bounded in

C1,ω
def (R

n)|X .

In the Lipschitz case ω(t) = t, for compact definable X:

∥f∥
C

1,1
def

(Rn)|X
≈n ∥f∥C1,1(Rn)|X .

12



Definable Lipschitz selections for affine-set valued maps

Theorem B [Parusiński–R 2023]

• Let (M, ρ) be a definable pseudometric space, i.e. M ⊆ RN and ρ are

definable, and Affk(Rn) := {affine H ⊆ Rn : dimH ≤ k}.

• Let F : M → Affk(Rn) be a definable map, i.e. its graph defined as

Γ(F ) =
⋃

x∈X({x} × F (x)) is definable.

The following assertions are equivalent:

1. F has a definable Lipschitz selection f : M → Rn (i.e. Γ(f) ⊆ Γ(F )).

2. F has a Lipschitz selection f̂ : M → Rn.

3. For all N ⊆ M, #N ≤ 2k+1, there is a Lip-selection fN of F |N such

that supN |fN |Lip(N ,Rn) < ∞. [Brudnyi–Shvartsman 2001]

If f̂ is a Lip-selection of F , then there is a definable Lip-selection f of F with

|f |Lip(M,Rn) ≤ C(k, n) |f̂ |Lip(M,Rn).
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• Let (M, ρ) be a definable pseudometric space, i.e. M ⊆ RN and ρ are

definable, and Affk(Rn) := {affine H ⊆ Rn : dimH ≤ k}.

• Let F : M → Affk(Rn) be a definable map, i.e. its graph defined as

Γ(F ) =
⋃

x∈X({x} × F (x)) is definable.

The following assertions are equivalent:

1. F has a definable Lipschitz selection f : M → Rn (i.e. Γ(f) ⊆ Γ(F )).

2. F has a Lipschitz selection f̂ : M → Rn.

3. For all N ⊆ M, #N ≤ 2k+1, there is a Lip-selection fN of F |N such

that supN |fN |Lip(N ,Rn) < ∞. [Brudnyi–Shvartsman 2001]

If f̂ is a Lip-selection of F , then there is a definable Lip-selection f of F with

|f |Lip(M,Rn) ≤ C(k, n) |f̂ |Lip(M,Rn).

13



Brenner–Epstein–Hochster–Kollár problem

Theorem C [Parusiński–R 2023]

Let ω be a definable modulus of continuity and Aij , bi : X → R, 1 ≤ i ≤ N ,

1 ≤ j ≤ M , definable functions on X ⊆ Rn. Consider∑M
j=1 Aijfj = bi, 1 ≤ i ≤ N. (†)

The following assertions are equivalent:

1. (†) has a definable ω-Hölder solution.

2. (†) has an ω-Hölder solution.

If f̂ = (f̂1, . . . , f̂M ) is an ω-Hölder solution, then there is a definable

ω-Hölder solution f = (f1, . . . , fM ) with

|f |C0,ω(X,RM ) ≤ C(M) |f̂ |C0,ω(X,RM ).

Remark

A C0-version is due to [Aschenbrenner–Thamrongthanyalak 2019], in the

semialgebraic setting see also [Fefferman–Kollár 2013].
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Overview of the results

Theorem A:
C1,ω extension

Theorem B:
Lipschitz selection

Theorem C:
BEHK problem
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Whitney’s extension problem: classical and semialgebraic

The definable C1,ω case and Lipschitz selections

About the proofs
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Theorem B implies Theorem C

Theorem A:
C1,ω extension

Theorem B:
Lipschitz selection

// Theorem C:
BEHK problem

Theorem B implies Theorem C

• For x ∈ X, set

F (x) := {(f1, . . . , fM ) ∈ RM :
∑M

j=1 Aij(x)fj = bi(x), 1 ≤ i ≤ N}.

• Then F : X → AffM (RM ) is definable.

• Equip X with the metric ρ(x, y) := ω(∥x− y∥).

• That (†) has a (definable) ω-Hölder solution means precisely that F has a

(definable) Lipschitz selection.

• Apply Theorem B.
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Reducing Theorem A to Theorem B

(following [Brudnyi–Shvartsman 2001])

Theorem A:
C1,ω extension

Theorem B:
Lipschitz selection

oo Theorem C:
BEHK problem

To show

• If f ∈ RX
def ∩ C1,ω(Rn)|X then f ∈ C1,ω

def (R
n)|X .

• Boundedness of RX
def ∩ C1,ω(Rn)|X = C1,ω

def (R
n)|X .

• In the Lipschitz case, for compact X, ∥f∥
C

1,1
def

(Rn)|X
≈n ∥f∥C1,1(Rn)|X .

Strategy

Associate a definable affine-set valued map in such a way that it admits a

definable Lipschitz selection if and only if f can be completed to a definable

Whitney jet (f, g) of class C1,ω.
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Proof of Theorem A

Whitney jets of class C1,ω on X

These are pairs (f, g), where f : X → R and g : X → Rn satisfy

∥(f, g)∥X,1,ω := sup
x∈X

|f(x)|+ sup
x∈X

∥g(x)∥+ |(f, g)|X,1,ω < ∞

|(f, g)|X,1,ω := sup
x̸=y∈X

|f(x)− f(y)− ⟨g(y), x− y⟩|
∥x− y∥ω(∥x− y∥)

+ sup
x̸=y∈X

∥g(x)− g(y)∥
ω(∥x− y∥)

Associated affine-set valued map

Given X ⊆ Rn closed definable, consider (MX , ρω) where

MX := {(x, y) ∈ X ×X : x ̸= y},
ρω((x, y), (x

′, y′)) := ω(∥x− y∥) + ω(∥x′ − y′∥) + ω(∥x− x′∥) if (x, y) ̸= (x′, y′),

Given f : X → R definable bounded, consider Lf : MX → Affn−1(Rn) with

Lf (x, y) := {z ∈ Rn : f(x) = f(y) + ⟨z, x− y⟩}.
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Proof of Theorem A

Proposition

Assume ω ≤ 1. The following assertions are equivalent:

1. There is a bounded definable g : X → Rn such that (f, g) is a definable

Whitney jet of class C1,ω on X.

2. There is a bounded definable Lip-selection ℓ of Lf .

3. There is a definable Lip-selection ℓ̃ of L̃f : M̃X → An−1(Rn), where

M̃X = MX ∪ {∗}, ρ̃ω(m, ∗) := 2, and L̃f (∗) := {0}.
If these equivalent conditions hold, then

inf
g

∥(f, g)∥X,1,ω ≈n sup
x∈X

|f(x)|+ inf
ℓ

{
sup

(x,y)∈MX

∥ℓ(x, y)∥+ |ℓ|Lip(MX ,Rn)

}
≈n sup

x∈X
|f(x)|+ inf

ℓ̃

|ℓ̃|
Lip(M̃X ,Rn)

.
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Proof of Theorem A

Sketch of the proof

• Let f ∈ RX
def ∩ C1,ω(Rn)|X .

• By the proposition, f can be completed to a definable Whitney jet of class

C1,ω if and only if L̃f has a definable Lip-selection.

• By Theorem B, it is enough to show that L̃f has a Lip-selection.

• By the finiteness principle, it is enough to show that the restriction of L̃f

to every subset of M̃X of cardinality at most 2n has a Lip-selection with

uniformly bounded Lip-constant.

• This follows from the assumption, since the above proposition also holds if

the attribute “definable” is removed.

• Definable Whitney jets of class C1,ω extend to definable C1,ω functions in

a bounded way.
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Definable Whitney jet extension theorem

Theorem D [Parusiński–R 2023]

Let 0 ≤ m ≤ p be integers, ω a modulus of continuity, X ⊆ Rn closed

definable. Any definable bounded family of Cm,ω Whitney jets on X extends

to a definable bounded family of Cm,ω functions on Rn, Cp outside X.

Remarks

• The Cm version (no boundedness) is due to [Kurdyka–Paw lucki 1997, 2015],

[Thamrongthanyalak 2017].

• More general version:

• on definable families (Xa)a∈A of closed Xa ⊆ Rn,

• ω can depend on a ∈ A if ∃C > 0 ∀a ∈ A: C−1 < ωa(1) < C.

• Corollary: Cm version with boundedness for definable families (Xa)a∈A of

compact Xa ⊆ Rn.

Open problem

Is there a continuous and/or linear extension operator? [Paw lucki 2008]
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Remarks

• The Cm version (no boundedness) is due to [Kurdyka–Paw lucki 1997, 2015],

[Thamrongthanyalak 2017].

• More general version:

• on definable families (Xa)a∈A of closed Xa ⊆ Rn,

• ω can depend on a ∈ A if ∃C > 0 ∀a ∈ A: C−1 < ωa(1) < C.

• Corollary: Cm version with boundedness for definable families (Xa)a∈A of

compact Xa ⊆ Rn.
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Main tools

Gromov’s inequality

Let φ : U → R, U ⊆ Rn, be definable. There exists a definable closed subset

Z ⊆ U with dimZ < n such that φ is Cp on U \ Z and for each ball

B = B(x, r) in U \ Z

|∂αφ(x)| ≤ C(n, p) sup
y∈B

|φ(y)| r−|α|, |α| ≤ p.

We use uniform variants for definable families of functions that can also

involve ω.

Uniform Λp stratification

Definable families of sets admit a stratification into a finite number of cells

that are defined by functions satisfying bounds of the above type. The

appearing constants and the number of cells are independent of the

parameter of the family.
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The Lipschitz case ω(t) = t

To show

Let X ⊆ Rn be definable and compact. Then

∥f∥
C

1,1
def

(Rn)|X
≈n ∥f∥C1,1(Rn)|X .

To this end, one needs to control the C1,1-norm of the definable extension F

of a definable C1,1-Whitney jet (f, g):

∥F∥C1,1(Rn) ≤ C(n) ∥(f, g)∥X,1,1.

Theorem [Azagra–Le Gruyer–Mudarra 2018]

Given a C1,1 Whitney jet (f, g) on X ⊆ Rn with |(f, g)|X,1,1 ≤ M , then a

C1,1 extension F of (f, g) to Rn can be given by an explicit formula such

that F |X = f , ∇F |X = g, and |∇F |Lip(Rn,Rn) ≤ M .

24



The Lipschitz case ω(t) = t

To show

Let X ⊆ Rn be definable and compact. Then

∥f∥
C

1,1
def

(Rn)|X
≈n ∥f∥C1,1(Rn)|X .

To this end, one needs to control the C1,1-norm of the definable extension F

of a definable C1,1-Whitney jet (f, g):

∥F∥C1,1(Rn) ≤ C(n) ∥(f, g)∥X,1,1.

Theorem [Azagra–Le Gruyer–Mudarra 2018]

Given a C1,1 Whitney jet (f, g) on X ⊆ Rn with |(f, g)|X,1,1 ≤ M , then a

C1,1 extension F of (f, g) to Rn can be given by an explicit formula such

that F |X = f , ∇F |X = g, and |∇F |Lip(Rn,Rn) ≤ M .

24



The Lipschitz case ω(t) = t

To show

Let X ⊆ Rn be definable and compact. Then

∥f∥
C

1,1
def

(Rn)|X
≈n ∥f∥C1,1(Rn)|X .

To this end, one needs to control the C1,1-norm of the definable extension F

of a definable C1,1-Whitney jet (f, g):

∥F∥C1,1(Rn) ≤ C(n) ∥(f, g)∥X,1,1.

Theorem [Azagra–Le Gruyer–Mudarra 2018]

Given a C1,1 Whitney jet (f, g) on X ⊆ Rn with |(f, g)|X,1,1 ≤ M , then a

C1,1 extension F of (f, g) to Rn can be given by an explicit formula such

that F |X = f , ∇F |X = g, and |∇F |Lip(Rn,Rn) ≤ M .

24



Explicit formula for F

Formula for F

F (x) := conv(h)(x)− M

2
∥x∥2, x ∈ Rn

h(x) := inf
y∈X

{
f(y) + ⟨g(y), x− y⟩+ M

2
∥x− y∥2

}
+

M

2
∥x∥2

conv(h) := (h∗)∗ the convex envelop of h

h∗(x) := sup
y∈Rn

{⟨x, y⟩ − h(y)}

Crucial observation

If X, f , and g are definable, then F is definable.

Remark

Based on the fact: f : Rn → R is C1,1 with |∇f |Lip(Rn,Rn) = M if and only

if f + M
2
∥ · ∥2 is convex and f − M

2
∥ · ∥2 is concave.
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Definable Kirszbraun theorem

Theorem [Azagra–Le Gruyer–Mudarra 2020]

Let f : X → Rm, X ⊆ Rn, be a Lipschitz function with M = |f |Lip(X,Rm).

Then there is a Lipschitz extension F : Rn → Rm of f with

|F |Lip(Rn,Rm) = M given by an explicit formula:

F (x) := ∇Rm conv(g)(x, 0), x ∈ Rn

g(x, y) := inf
z∈X

{
⟨f(z), y⟩+ M

2
∥x− z∥2

}
+

M

2
∥x∥2 +M∥y∥2

(x, y) ∈ Rn × Rm.

Corollary (Definable Kirszbraun theorem) [Aschenbrenner–Fischer 2010]

If f is definable, then F is a definable Lipschitz extension of f with

|F |Lip(Rn,Rm) = |f |Lip(X,Rm).
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Overview of the results

Theorem A:
C1,ω extension

Theorem B:
Lipschitz selection
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Overview of the results

Theorem E:
General Lipschitz selection
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Setup for Theorem E

• Let V ⊆ RN and E ⊆ {(v, v′) ∈ V × V : v ̸= v′} be definable. Assume

that (v, v′) ∈ E iff (v′, v) ∈ E. Consider the graph (V,E).

• A subset W ⊆ V is called admissible if the subgraph (W,EW ) of (V,E),

where EW := {(v, v′) ∈ E : v, v′ ∈ W}, has no isolated vertices.

• Endow (V,E) with a weight, i.e., a symmetric function w : E → [0,∞]. It

induces an extended pseudometric space (V, σ). If v ̸= v′, then σ(v, v′) is

the infimum of the sums of weights over all paths of edges joining v and v′.

• We say that (V,E,w) is a definable weighted graph if there is a definable

pseudometric ρ : V × V → [0,∞) and A ≥ 1 such that

ρ/A ≤ σ ≤ Aρ.

Then (V, ρ) is a definable pseudometric space. Any two vertices are

connected by a path of edges and V is an admissible subset of V .
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General definable Lipschitz selection

Theorem E [Parusiński–R 2023]

Let (V,E,w) be a definable weighted graph, F : V → Affk(Rn) definable.

Assume that for each admissible W ⊆ V with #W ≤ 2k+1 there is a

Lip-selection fW : W → Rn of F |W such that |fW |Lip(W,Rn) ≤ 1.

Then there exists a definable Lip-selection f : V → Rn of F such that

|f |Lip(V,Rn) ≤ C(k, n,A).

Theorem E implies Theorem B

If (M, ρ) is a definable pseudometric space, then the full graph

(M, {(m,m′) ∈ M×M : m ̸= m′}) with weight ρ is a definable weighted

graph (where ρ = σ). Any subset of M is admissible.
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Proof of Theorem E

Based on [Brudnyi–Shvartsman 2001]. Induction on k. The induction step

(k → k + 1):

(V, ρ)
F−→ Affk+1(Rn)

(V, ρ)
f−→ Rn

(1)

��

(V̂ , ρ̂)
F̂−→ Q(Rn)

(V̂ , ρ̂)
f̂−→ Rn

(3)

33

(V , ρ)
F−→ Affk(Rn)

(V , ρ)
f−→ Rn

(2)
mm

1. From F one constructs a “doubling” (V , ρ) of (V, ρ) and F such that

there is a definable Lip-selection f of F , by induction.

2. f is used to define a new space (V̂ = V , ρ̂) and a cube-valued map

F̂ : V̂ → Q(Rn); the center of the cube F̂ (v) is f(v). There is a

Lip-selection f̂ of F̂ ; it can be interpreted as a Lipschitz map on (V, ρ).

3. The desired Lip-selection f of F is found by defining f(v) to be the

orthogonal projection of f̂(v) to the affine subspace F (v) of Rn.
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Construction of F : (V , ρ) → Affk(Rn)

Suppose that v1 ↔ v2 are joined by an edge. By assumption, there exist

xi ∈ F (vi) such that ∥x1 − x2∥ ≤ ρ(v1, v2).

P (v1, v2) = F (v1) ∩ (F (v2) +Q(2ρ(v1, v2)) + x1 − x2)

=
⋂

i∈I(v1,v2)

F (v1) ∩ (Li +Q(ri))

Li ⊆ F (v1) are affine subspaces of

dimension ≤ k containing x1.

V := {(v1, v2, i) : v1 ↔ v2, i ∈ I(v1, v2)}

ρ(v, v′) := ρ(v1, v
′
1) + ri + r′i

F : V → Affk(Rn), F (v1, v2, i) := Li

I n F v2

L2

tn
PUnie t1
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Outlook

Open problems

• SWEPn,m for m ≥ 2, n ≥ 3

• Control of the (semi)norms

• Control of the semialgebraic diagram

• Extension of semialgebraic/definable Cm,ω Whitney jets by a continuous

and/or linear operator

• . . .
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Happy Birthday!
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