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» Chevalley Theorem. If F : C* — CP is a polynomial map, and X c C"
is algebraic then F'(X) is constructible.

» A constructible set is a finite union of sets of the following form:
{r eC?| Pi(z) =---= Pi(x) =0and Q(z) # 0}.

> In particular the dimension of F(X) equals the dimension of its Zariski
closure F(X):

dim(F(X)) = dim(F (X)) < dim(X).
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What about the analytic case?

» Theorem (Remmert - 1957): If ® : X — Y is a complex analytic map
between complex analytic sets that is proper, then ®(X) is complex
analytic.

> (Osgood - 1916) Let & : C* — C? with ®(u,v) = (u, uv, ue®).
Then the Zariski closure of ®(C?) equals C?.

Therefore, ®(C?) is not analytic.
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Ranks of an analytic map

» When @ : (CP,0) — (C™,0) is analytic, we denote by r(®) the generic
rank of the Jacobian matrix of ®.

» Then ® induces ®* : C{z1,...,xn} — C{ui, ..., up}.
We define
rA((}) = dlm (C{xh . ,.’L‘n}/Ker(cI)*)) )

> We also have & : C[z1, ..., zn] — Clu, ..., up].

(@) = dim (C[[m, . »xn]]/Ker@*)) ,

We always have | 1(®) < 1 (@) < 1*(®) |




Analytic vs formal category: Gabrielov’s Example (1973)

Answering a question of Grothendieck, Gabrielov provides an example of a
morphism
Y C{z1,z2,x3, 24} —> Clu,v}

with
r(p) =2 <1’ () =3 <r() =4



Gabrielov’s rank Theorem (1975):

1(2) =17 (3) = 17 (2) = 14(D) |




Gabrielov’s rank Theorem (1975):

1(®) =17 () =17 (@) = (@)

» Question: Can we extend this result to a more general (and algebraic)
setting?
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Weierstrass temperate families

We fix an uncountable algebraically closed field of characteristic zero K.
Forevery n € N, K{{z1,...,z.}} is a K-subalgebra of K[z1,...,zx].

> (Weierstrass division) K{{z1, ...z, }} satisfies the Weierstrass division
Theorem.

> (Stability under blow-down) For f € K[z1,...,xx]
f(@1,. . zno1,120) € K{z}} = f € K{{z}}.
> (Stability under hyperplane sections) For f € K[z] \ K{{z}}, the set
NeK| f(z1,. s Tn1,A11) € K{z}}}

is at most countable.

> ("Temperateness”): Let v(t) be algebraic of degree d over K[t]. Let
ai(t,z), ..., aq(t, z) € K[t][z]. Then

aa(t,z) + aa—1(t, 2)7(t) + - +ar(t, 2)9(8) " € K{{t, 2}

= ai(t,z) € K{{t, z}}.



Rank Theorem (Belotto, Curmi, R., 2022):

Let
o: K{z1,...,zn}t — K{ur,. .., upl}

be a morphism of temperate power series rings. Then

r(®) =17 (@) = 17 (®) =17 (P).
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Examples of Weierstrass temperate families:

(i) The family of convergent power series (C{z1,...,%n}),cx-

(ii) The family of convergent power series (Cp{z1,...,Zn}),cx-

(iii) The family of algebraic power series (KC(z1,...,%n)), cn-

(iv) (Eisenstein series) Let A be a UFD containing an uncountable
characteristic zero field.

K = algebraic closure of Frac(A)

Then
Kz, o= | JAsldle, .20l

feA\{0} ceK

defines a Weierstrass temperate family.
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Strategy of proof (1)
We may reduce to the case ¢ : K{{z1,z2,y}} — K{{u,v}} is such that
() =17 (¢) =2

and Ker(v) is generated by one irreducible monic polynomial
P(z,y) € Kz][y].

Moreover we may assume that

Y (z1,22,y) — (u,uv, f(u,v))
for some f(u,v) € K{{u,v}}.
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Roots of polynomials with temperate power series coefficients
We denote by P{{z}} the set of series of the form
ak(z)

suchthat ), ax(x) € K{{z}}.

e Theorem (Tougeron 90, BCR): If P(z,y) € K{{z}}[y] is @ monic
polynomial in y, then its roots can be expressed as

Ao+ Aty + Aoy + -+ Agyt!

where the A; € P{{z}}, and ~ is a homogeneous function.
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Behaviour under blowups where n = 2
LetA=377, b(iﬁiff+ﬁ € P[].

Leto : (N, E) — (K?,0) be the blowup of the origin. And let a € E not
on the strict transform of {6 = 0}.

Up to some linear change of coordinates, we may assume that
o g(z1,x2) — g(u, uv).

> Then o} (A) is a power series.

> Moreover o;; (A) € K{u,v}} iff A € P{x}}.
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Strategy of proof (2)
We have

i K{fznazyly — K{{u,o}}

g(@1,22,y)  — g(u,uv, f(u,v))

for some f(u,v) € K{{u,v}}.
Moreover P(x1,x2,y) € K[z][y] is an (irreducible) generator of Ker(zﬂ).
We will prove that P € K{{z}}[y].

P =Q1---Q, where the Q; are irreducible monic polynomials in P[z][y].

And each Q; = H;Ll(y — &i(z,7i,;)) and the v, ; are the conjugates of
some homogeneous element ~;.

€2

By assumption, P (xl,mg,f (ml, m—)) =0
1
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Strategy of proof (3)

After one blowup o1, o7 ,(P) has a temperate root at some point a € E;
because
P(u,uv, f(u,v)) =0

We make more blowups in order to insure that A, P, is normal crossing
at every point b of the exceptional divisor.

(N, E,) —"~ . -*>(N1,E1) Z — (K?,0)

Weseto =010---00,and,Vj € {1,...,r}, E; is a simple normal
crossing divisor:
E;=EVUEPU--.UEY

where E{*) is the strict transform of £, (k < j) and E\ is the
exceptional divisor of o;.



Strategy of proof (4)

Claim 1: let Q be one of the Q;. Then, for every a € EWY,
o:(Q) € K[z', z5][y] for some local coordinates (x7, x5) at a.
(Jung-Abhyankar Theorem)



Strategy of proof (4)

Claim 1: let Q be one of the Q;. Then, for every a € EWY,
o:(Q) € K[z', z5][y] for some local coordinates (x7, x5) at a.
(Jung-Abhyankar Theorem)

Claim 2: Assume that o7, (Q:) admits a temperate factor for some
a € EX. Then Q; € P{z}}[y].



Strategy of proof (4)

Claim 1: let Q be one of the Q;. Then, for every a € EWY,
o:(Q) € K[z', z5][y] for some local coordinates (x7, x5) at a.
(Jung-Abhyankar Theorem)

Claim 2: Assume that o7, (Q:) admits a temperate factor for some
a € EX. Then Q; € P{z}}[y].

If r=1: ok



Strategy of proof (4)

Claim 1: let Q be one of the Q;. Then, for every a € EWY,
o:(Q) € K[z', z5][y] for some local coordinates (x7, x5) at a.
(Jung-Abhyankar Theorem)

Claim 2: Assume that o7, (Q:) admits a temperate factor for some
a € EX. Then Q; € P{z}}[y].

If r =1: ok
Proof by induction on (r, k):

r = number of blowups

P has a temperate factor at a € E*
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