On Gabrielov's rank Theorem

Guillaume Rond (joint work with André Belotto & Octave Curmi)

June 25th, 2025

Images of algebraic maps

▶ Chevalley Theorem. If $F: \mathbb{C}^n \longrightarrow \mathbb{C}^p$ is a polynomial map, and $X \subset \mathbb{C}^n$ is algebraic then F(X) is constructible.

Images of algebraic maps

- ▶ Chevalley Theorem. If $F: \mathbb{C}^n \longrightarrow \mathbb{C}^p$ is a polynomial map, and $X \subset \mathbb{C}^n$ is algebraic then F(X) is constructible.
- ▶ A constructible set is a finite union of sets of the following form:

$$\{x \in \mathbb{C}^p \mid P_1(x) = \dots = P_\ell(x) = 0 \text{ and } Q(x) \neq 0\}.$$

Images of algebraic maps

- ▶ Chevalley Theorem. If $F: \mathbb{C}^n \longrightarrow \mathbb{C}^p$ is a polynomial map, and $X \subset \mathbb{C}^n$ is algebraic then F(X) is constructible.
- ▶ A constructible set is a finite union of sets of the following form:

$$\{x \in \mathbb{C}^p \mid P_1(x) = \dots = P_\ell(x) = 0 \text{ and } Q(x) \neq 0\}.$$

In particular the dimension of F(X) equals the dimension of its Zariski closure $\overline{F(X)}$:

$$\dim(\overline{F(X)}) = \dim(F(X)) \le \dim(X).$$

▶ Theorem (Remmert - 1957): If $\Phi: X \longrightarrow Y$ is a **complex** analytic map between complex analytic sets that is **proper**, then $\Phi(X)$ is complex analytic.

- ▶ Theorem (Remmert 1957): If $\Phi: X \longrightarrow Y$ is a **complex** analytic map between complex analytic sets that is **proper**, then $\Phi(X)$ is complex analytic.
- (Osgood 1916) Let $\Phi: \mathbb{C}^2 \longrightarrow \mathbb{C}^3$ with $\Phi(u,v) = (u,uv,ue^v)$.

- ▶ Theorem (Remmert 1957): If $\Phi: X \longrightarrow Y$ is a **complex** analytic map between complex analytic sets that is **proper**, then $\Phi(X)$ is complex analytic.
- ▶ (Osgood 1916) Let $\Phi : \mathbb{C}^2 \longrightarrow \mathbb{C}^3$ with $\Phi(u,v) = (u,uv,ue^v)$. Then the Zariski closure of $\Phi(\mathbb{C}^2)$ equals \mathbb{C}^3 .

- ▶ Theorem (Remmert 1957): If $\Phi: X \longrightarrow Y$ is a **complex** analytic map between complex analytic sets that is **proper**, then $\Phi(X)$ is complex analytic.
- ▶ (Osgood 1916) Let $\Phi: \mathbb{C}^2 \longrightarrow \mathbb{C}^3$ with $\Phi(u,v) = (u,uv,ue^v)$. Then the Zariski closure of $\Phi(\mathbb{C}^2)$ equals \mathbb{C}^3 .

Therefore, $\Phi(\mathbb{C}^2)$ is not analytic.

▶ When $\Phi: (\mathbb{C}^p, 0) \longrightarrow (\mathbb{C}^n, 0)$ is analytic, we denote by $r(\Phi)$ the generic rank of the Jacobian matrix of Φ .

- ▶ When $\Phi: (\mathbb{C}^p, 0) \longrightarrow (\mathbb{C}^n, 0)$ is analytic, we denote by $r(\Phi)$ the generic rank of the Jacobian matrix of Φ .
- ▶ Then Φ induces $\Phi^* : \mathbb{C}\{x_1, \dots, x_n\} \longrightarrow \mathbb{C}\{u_1, \dots, u_p\}$.

- ▶ When $\Phi: (\mathbb{C}^p, 0) \longrightarrow (\mathbb{C}^n, 0)$ is analytic, we denote by $r(\Phi)$ the generic rank of the Jacobian matrix of Φ .

- ▶ When $\Phi: (\mathbb{C}^p, 0) \longrightarrow (\mathbb{C}^n, 0)$ is analytic, we denote by $r(\Phi)$ the generic rank of the Jacobian matrix of Φ .

$$ightharpoonup$$
 We also have $\widehat{\Phi}^*: \mathbb{C}[x_1,\ldots,x_n] \longrightarrow \mathbb{C}[u_1,\ldots,u_n]$.

$$\mathrm{r}^{\mathcal{F}}(\Phi) = \dim \left(\mathbb{C}[\![x_1,\ldots,x_n]\!] / \mathsf{Ker}(\widehat{\Phi}^*)
ight).$$

- ▶ When $\Phi: (\mathbb{C}^p, 0) \longrightarrow (\mathbb{C}^n, 0)$ is analytic, we denote by $r(\Phi)$ the generic rank of the Jacobian matrix of Φ .

$$\qquad \qquad \text{We also have } \widehat{\Phi}^*: \mathbb{C}[\![x_1,\ldots,x_n]\!] \longrightarrow \mathbb{C}[\![u_1,\ldots,u_p]\!].$$

$$\mathbf{r}^{\mathcal{F}}(\Phi) = \dim\left(\mathbb{C}[\![x_1,\ldots,x_n]\!]/\!\mathsf{Ker}(\widehat{\Phi}^*)\right).$$

We always have $r(\Phi) \leq r^{\mathcal{F}}(\Phi) \leq r^{\mathcal{A}}(\Phi)$

Analytic vs formal category: Gabrielov's Example (1973)

Answering a question of Grothendieck, Gabrielov provides an example of a morphism

$$\psi: \mathbb{C}\{x_1, x_2, x_3, x_4\} \longrightarrow \mathbb{C}\{u, v\}$$

with

$$r(\psi) = 2 < r^{\mathcal{F}}(\psi) = 3 < r^{\mathcal{A}}(\psi) = 4$$

Gabrielov's rank Theorem (1975):

$$r(\Phi) = r^{\mathcal{F}}(\Phi) \Longrightarrow r^{\mathcal{F}}(\Phi) = r^{\mathcal{A}}(\Phi)$$

Gabrielov's rank Theorem (1975):

$$r(\Phi) = r^{\mathcal{F}}(\Phi) \Longrightarrow r^{\mathcal{F}}(\Phi) = r^{\mathcal{A}}(\Phi)$$

Question: Can we extend this result to a more general (and algebraic) setting?

We fix an uncountable algebraically closed field of characteristic zero \mathcal{K} . For every $n \in \mathbb{N}$, $\mathcal{K}\{\{x_1, \dots, x_n\}\}$ is a \mathcal{K} -subalgebra of $\mathcal{K}[x_1, \dots, x_n]$.

We fix an uncountable algebraically closed field of characteristic zero \mathcal{K} . For every $n \in \mathbb{N}$, $\mathcal{K}\{\{x_1, \dots, x_n\}\}$ is a \mathcal{K} -subalgebra of $\mathcal{K}[x_1, \dots, x_n]$.

• (Weierstrass division) $\mathcal{K}\{\{x_1,\ldots x_n\}\}$ satisfies the Weierstrass division Theorem.

We fix an uncountable algebraically closed field of characteristic zero \mathcal{K} . For every $n \in \mathbb{N}$, $\mathcal{K}\{\{x_1, \dots, x_n\}\}$ is a \mathcal{K} -subalgebra of $\mathcal{K}[x_1, \dots, x_n]$.

- (Weierstrass division) $\mathcal{K}\{\{x_1,\ldots x_n\}\}$ satisfies the Weierstrass division Theorem.
- ▶ (Stability under blow-down) For $f \in \mathcal{K}[[x_1, \dots, x_n]]$

$$f(x_1,\ldots,x_{n-1},x_1x_n)\in\mathcal{K}\{\{x\}\}\Longrightarrow f\in\mathcal{K}\{\{x\}\}.$$

We fix an uncountable algebraically closed field of characteristic zero \mathcal{K} . For every $n \in \mathbb{N}$, $\mathcal{K}\{\{x_1, \dots, x_n\}\}$ is a \mathcal{K} -subalgebra of $\mathcal{K}[x_1, \dots, x_n]$.

- (Weierstrass division) $\mathcal{K}\{\{x_1,\ldots x_n\}\}$ satisfies the Weierstrass division Theorem.
- ▶ (Stability under blow-down) For $f \in \mathcal{K}[x_1, ..., x_n]$

$$f(x_1,\ldots,x_{n-1},x_1x_n)\in\mathcal{K}\{\{x\}\}\Longrightarrow f\in\mathcal{K}\{\{x\}\}.$$

▶ (Stability under hyperplane sections) For $f \in \mathcal{K}[x] \setminus \mathcal{K}(\{x\})$, the set

$$\{\lambda \in \mathcal{K} \mid f(x_1, \dots, x_{n-1}, \lambda x_1) \in \mathcal{K}\{\{x\}\}\}$$

is at most countable.

We fix an uncountable algebraically closed field of characteristic zero \mathcal{K} . For every $n \in \mathbb{N}$, $\mathcal{K}\{\{x_1, \dots, x_n\}\}$ is a \mathcal{K} -subalgebra of $\mathcal{K}[x_1, \dots, x_n]$.

- (Weierstrass division) $\mathcal{K}\{\{x_1,\ldots x_n\}\}$ satisfies the Weierstrass division Theorem.
- ▶ (Stability under blow-down) For $f \in \mathcal{K}[x_1, ..., x_n]$

$$f(x_1, \ldots, x_{n-1}, x_1 x_n) \in \mathcal{K}\{\{x\}\} \Longrightarrow f \in \mathcal{K}\{\{x\}\}.$$

▶ (Stability under hyperplane sections) For $f \in \mathcal{K}[x] \setminus \mathcal{K}(\{x\})$, the set

$$\{\lambda \in \mathcal{K} \mid f(x_1, \dots, x_{n-1}, \lambda x_1) \in \mathcal{K}\{\{x\}\}\}$$

is at most countable.

• ("Temperateness"): Let $\gamma(t)$ be algebraic of degree d over $\mathcal{K}[t]$. Let $a_1(t,z),\ldots,a_d(t,z)\in\mathcal{K}[t][\![z]\!]$. Then

$$a_d(t,z) + a_{d-1}(t,z)\gamma(t) + \dots + a_1(t,z)\gamma(t)^{d-1} \in \mathcal{K}\{\{t,z\}\}\}$$
$$\Longrightarrow a_i(t,z) \in \mathcal{K}\{\{t,z\}\}\}.$$

Rank Theorem (Belotto, Curmi, R., 2022):

Let

$$\varphi: \mathcal{K}\{\{x_1,\ldots,x_n\}\} \longrightarrow \mathcal{K}\{\{u_1,\ldots,u_p\}\}$$

be a morphism of temperate power series rings. Then

$$r(\Phi) = r^{\mathcal{F}}(\Phi) \Longrightarrow r^{\mathcal{F}}(\Phi) = r^{\mathcal{T}}(\Phi).$$

(i) The family of convergent power series $(\mathbb{C}\{x_1,\ldots,x_n\})_{n\in\mathbb{N}}$.

- (i) The family of convergent power series $(\mathbb{C}\{x_1,\ldots,x_n\})_{n\in\mathbb{N}}$.
- (ii) The family of convergent power series $(\mathbb{C}_p\{x_1,\ldots,x_n\})_{n\in\mathbb{N}}$.

- (i) The family of convergent power series $(\mathbb{C}\{x_1,\ldots,x_n\})_{n\in\mathbb{N}}$.
- (ii) The family of convergent power series $(\mathbb{C}_p\{x_1,\ldots,x_n\})_{n\in\mathbb{N}}$.
- (iii) The family of algebraic power series $(\mathcal{K}\langle x_1,\ldots,x_n\rangle)_{n\in\mathbb{N}}$.

- (i) The family of convergent power series $(\mathbb{C}\{x_1,\ldots,x_n\})_{n\in\mathbb{N}}$.
- (ii) The family of convergent power series $(\mathbb{C}_p\{x_1,\ldots,x_n\})_{n\in\mathbb{N}}$.
- (iii) The family of algebraic power series $(\mathcal{K}\langle x_1,\ldots,x_n\rangle)_{n\in\mathbb{N}}$.
- (iv) (Eisenstein series) Let A be a UFD containing an uncountable characteristic zero field.

$$\mathcal{K} = \text{fraction field of } A$$

Then

$$\mathcal{K}\{\{x_1,\ldots,x_n\}\}:=\bigcup_{f\in A\setminus\{0\}}A_f[\![x_1,\ldots,x_n]\!]$$

defines a Weierstrass temperate family.

- (i) The family of convergent power series $(\mathbb{C}\{x_1,\ldots,x_n\})_{n\in\mathbb{N}}$.
- (ii) The family of convergent power series $(\mathbb{C}_p\{x_1,\ldots,x_n\})_{n\in\mathbb{N}}$.
- (iii) The family of algebraic power series $(\mathcal{K}\langle x_1,\ldots,x_n\rangle)_{n\in\mathbb{N}}$.
- (iv) (Eisenstein series) Let A be a UFD containing an uncountable characteristic zero field.

$$\mathcal{K} = \text{algebraic closure of } \operatorname{Frac}(A)$$

Then

$$\mathcal{K}\{\{x_1,\ldots,x_n\}\} := \bigcup_{f \in A \setminus \{0\}} \bigcup_{\mathfrak{c} \in \mathcal{K}} A_f[\mathfrak{c}][x_1,\ldots,x_n]$$

defines a Weierstrass temperate family.

Strategy of proof (1)

We may reduce to the case $\psi:\mathcal{K}\{\{x_1,x_2,y\}\}\longrightarrow\mathcal{K}\{\{u,v\}\}$ is such that

$$r(\psi) = r^{\mathcal{F}}(\psi) = 2$$

Strategy of proof (1)

We may reduce to the case $\psi:\mathcal{K}\{\{x_1,x_2,y\}\}\longrightarrow\mathcal{K}\{\{u,v\}\}$ is such that

$$r(\psi) = r^{\mathcal{F}}(\psi) = 2$$

and $\mathrm{Ker}(\widehat{\psi})$ is generated by one irreducible monic polynomial $P(x,y) \in \mathcal{K}[\![x]\!][y].$

Strategy of proof (1)

We may reduce to the case $\psi:\mathcal{K}\{\{x_1,x_2,y\}\}\longrightarrow\mathcal{K}\{\{u,v\}\}$ is such that

$$r(\psi) = r^{\mathcal{F}}(\psi) = 2$$

and $\mathrm{Ker}(\widehat{\psi})$ is generated by one irreducible monic polynomial $P(x,y)\in\mathcal{K}[\![x]\!][y].$

Moreover we may assume that

$$\psi:(x_1,x_2,y)\longmapsto(u,uv,f(u,v))$$

for some $f(u, v) \in \mathcal{K}\{\{u, v\}\}.$

A bit of algebra: roots of polynomials with power series coefficients

We denote by $\mathbb{P}[x]$ the set of series of the form

$$\sum_{k=0}^{\infty} \frac{a_k(x)}{b(x)^{\alpha k + \beta}}$$

where the a_k and b are homogeneous polynomials, the total degree of $\frac{a_k(x)}{b(x)^{\alpha k+\beta}}$ is k, and $\alpha, \beta \in \mathbb{N}$.

A bit of algebra: roots of polynomials with power series coefficients

We denote by $\mathbb{P}[x]$ the set of series of the form

$$\sum_{k=0}^{\infty} \frac{a_k(x)}{b(x)^{\alpha k + \beta}}$$

where the a_k and b are homogeneous polynomials, the total degree of $\frac{a_k(x)}{b(x+\alpha k+\beta)}$ is k, and α , $\beta \in \mathbb{N}$.

• Theorem (Tougeron 90): If $P(x,y) \in \mathcal{K}[\![x]\!][y]$ is a monic polynomial in y, then its roots can be expressed as

$$A_0 + A_1 \gamma + A_2 \gamma^2 + \dots + A_{d-1} \gamma^{d-1}$$

where the $A_i \in \mathbb{P}[\![x]\!]$, and γ is a homogeneous function.

Roots of polynomials with temperate power series coefficients

We denote by $\mathbb{P}\{\{x\}\}\$ the set of series of the form

$$\sum_{k=0}^{\infty} \frac{a_k(x)}{b(x)^{\alpha k + \beta}} \in \mathbb{P}[\![x]\!]$$

such that $\sum_k a_k(x) \in \mathcal{K}\{\{x\}\}\$.

Roots of polynomials with temperate power series coefficients

We denote by $\mathbb{P}\{\{x\}\}\$ the set of series of the form

$$\sum_{k=0}^{\infty} \frac{a_k(x)}{b(x)^{\alpha k + \beta}} \in \mathbb{P}[\![x]\!]$$

such that $\sum_k a_k(x) \in \mathcal{K}\{\{x\}\}.$

• **Theorem** (Tougeron 90, BCR): If $P(x,y) \in \mathcal{K}\{\{x\}\}[y]$ is a monic polynomial in y, then its roots can be expressed as

$$A_0 + A_1 \gamma + A_2 \gamma^2 + \dots + A_{d-1} \gamma^{d-1}$$

where the $A_i \in \mathbb{P}\{\{x\}\}\$, and γ is a homogeneous function.

Behaviour under blowups where n=2

Let
$$A = \sum_{k=0}^{\infty} \frac{a_k(x)}{b(x)^{\alpha k + \beta}} \in \mathbb{P}[\![x]\!].$$

Behaviour under blowups where n=2

Let
$$A = \sum_{k=0}^{\infty} \frac{a_k(x)}{b(x)^{\alpha k + \beta}} \in \mathbb{P}[x].$$

Let $\sigma:(N,E)\longrightarrow (\mathcal{K}^2,0)$ be the blowup of the origin. And let $\mathfrak{a}\in E$ not on the strict transform of $\{b=0\}$.

Behaviour under blowups where n=2

Let
$$A = \sum_{k=0}^{\infty} \frac{a_k(x)}{b(x)^{\alpha k + \beta}} \in \mathbb{P}[x].$$

Let $\sigma:(N,E)\longrightarrow (\mathcal{K}^2,0)$ be the blowup of the origin. And let $\mathfrak{a}\in E$ not on the strict transform of $\{b=0\}$.

Up to some linear change of coordinates, we may assume that $\sigma^*_{\mathfrak{a}}:g(x_1,x_2)\longmapsto g(u,uv).$

Behaviour under blowups where n=2

Let
$$A = \sum_{k=0}^{\infty} \frac{a_k(x)}{b(x)^{\alpha k + \beta}} \in \mathbb{P}[x].$$

Let $\sigma:(N,E)\longrightarrow (\mathcal{K}^2,0)$ be the blowup of the origin. And let $\mathfrak{a}\in E$ not on the strict transform of $\{b=0\}$.

Up to some linear change of coordinates, we may assume that $\sigma^*_{\mathfrak{a}}:g(x_1,x_2)\longmapsto g(u,uv).$

▶ Then $\sigma_{\mathfrak{a}}^*(A)$ is a power series.

Behaviour under blowups where n=2

Let
$$A = \sum_{k=0}^{\infty} \frac{a_k(x)}{b(x)^{\alpha k + \beta}} \in \mathbb{P}[x].$$

Let $\sigma:(N,E)\longrightarrow (\mathcal{K}^2,0)$ be the blowup of the origin. And let $\mathfrak{a}\in E$ not on the strict transform of $\{b=0\}$.

Up to some linear change of coordinates, we may assume that $\sigma_{\mathfrak{a}}^*: g(x_1,x_2) \longmapsto g(u,uv)$.

- ▶ Then $\sigma_{\mathfrak{a}}^*(A)$ is a power series.
- ▶ Moreover $\sigma_{\mathfrak{a}}^*(A) \in \mathcal{K}\{\{u,v\}\}$ iff $A \in \mathbb{P}\{\{x\}\}$.

We have

$$\begin{array}{cccc} \psi: & \mathcal{K}\{\{x_1, x_2, y\}\} & \longrightarrow & \mathcal{K}\{\{u, v\}\} \\ & g(x_1, x_2, y) & \longmapsto & g(u, uv, f(u, v)) \end{array}$$

for some $f(u,v) \in \mathcal{K}\{\{u,v\}\}$.

We have

$$\begin{array}{cccc} \psi: & \mathcal{K}\{\{x_1, x_2, y\}\} & \longrightarrow & \mathcal{K}\{\{u, v\}\} \\ & g(x_1, x_2, y) & \longmapsto & g(u, uv, f(u, v)) \end{array}$$

for some $f(u,v) \in \mathcal{K}\{\{u,v\}\}$.

Moreover $P(x_1, x_2, y) \in \mathcal{K}[\![x]\!][y]$ is an (irreducible) generator of $\text{Ker}(\widehat{\psi})$.

We have

$$\begin{array}{cccc} \psi: & \mathcal{K}\{\{x_1, x_2, y\}\} & \longrightarrow & \mathcal{K}\{\{u, v\}\} \\ & g(x_1, x_2, y) & \longmapsto & g(u, uv, f(u, v)) \end{array}$$

for some $f(u, v) \in \mathcal{K}\{\{u, v\}\}.$

Moreover $P(x_1, x_2, y) \in \mathcal{K}[\![x]\!][y]$ is an (irreducible) generator of $\text{Ker}(\widehat{\psi})$.

We will prove that $P \in \mathcal{K}\{\{x\}\}[y]$.

We have

$$\begin{array}{cccc} \psi: & \mathcal{K}\{\{x_1, x_2, y\}\} & \longrightarrow & \mathcal{K}\{\{u, v\}\} \\ & g(x_1, x_2, y) & \longmapsto & g(u, uv, f(u, v)) \end{array}$$

for some $f(u, v) \in \mathcal{K}\{\{u, v\}\}.$

Moreover $P(x_1, x_2, y) \in \mathcal{K}[\![x]\!][y]$ is an (irreducible) generator of $\text{Ker}(\widehat{\psi})$.

We will prove that $P \in \mathcal{K}\{\{x\}\}[y]$.

 $P=Q_1\cdots Q_s$ where the Q_i are irreducible monic polynomials in $\mathbb{P}[\![x]\!][y].$

We have

$$\begin{array}{cccc} \psi: & \mathcal{K}\{\{x_1, x_2, y\}\} & \longrightarrow & \mathcal{K}\{\{u, v\}\} \\ & g(x_1, x_2, y) & \longmapsto & g(u, uv, f(u, v)) \end{array}$$

for some $f(u, v) \in \mathcal{K}\{\{u, v\}\}.$

Moreover $P(x_1, x_2, y) \in \mathcal{K}[x][y]$ is an (irreducible) generator of $Ker(\widehat{\psi})$.

We will prove that $P \in \mathcal{K}\{\{x\}\}[y]$.

 $P=Q_1\cdots Q_s$ where the Q_i are irreducible monic polynomials in $\mathbb{P}[\![x]\!][y].$

And each $Q_i = \prod_{j=1}^{r_i} (y - \xi_i(x, \gamma_{i,j}))$ and the $\gamma_{i,j}$ are the conjugates of some homogeneous element γ_i .

We have

$$\begin{array}{cccc} \psi: & \mathcal{K}\{\{x_1, x_2, y\}\} & \longrightarrow & \mathcal{K}\{\{u, v\}\} \\ & g(x_1, x_2, y) & \longmapsto & g(u, uv, f(u, v)) \end{array}$$

for some $f(u, v) \in \mathcal{K}\{\{u, v\}\}.$

Moreover $P(x_1, x_2, y) \in \mathcal{K}[x][y]$ is an (irreducible) generator of $Ker(\widehat{\psi})$.

We will prove that $P \in \mathcal{K}\{\{x\}\}[y]$.

 $P=Q_1\cdots Q_s$ where the Q_i are irreducible monic polynomials in $\mathbb{P}[\![x]\!][y]$.

And each $Q_i=\prod_{j=1}^{r_i}(y-\xi_i(x,\gamma_{i,j}))$ and the $\gamma_{i,j}$ are the conjugates of some homogeneous element γ_i .

By assumption,
$$P\left(x_1, x_2, f\left(x_1, \frac{x_2}{x_1}\right)\right) = 0$$

After one blowup σ_1 , $\sigma_{1\mathfrak{a}}^*(P)$ has a temperate root at some point $\mathfrak{a}\in E_1$ because

$$P(u, uv, f(u, v)) = 0$$

After one blowup σ_1 , $\sigma_{1\mathfrak{a}}^*(P)$ has a temperate root at some point $\mathfrak{a}\in E_1$ because

$$P(u, uv, f(u, v)) = 0$$

We make more blowups in order to insure that $\Delta_y P_{\mathfrak{b}}$ is normal crossing at every point \mathfrak{b} of the exceptional divisor.

After one blowup σ_1 , $\sigma_{1\mathfrak{a}}^*(P)$ has a temperate root at some point $\mathfrak{a}\in E_1$ because

$$P(u, uv, f(u, v)) = 0$$

We make more blowups in order to insure that $\Delta_y P_{\mathfrak{b}}$ is normal crossing at every point \mathfrak{b} of the exceptional divisor.

$$(N_r, E_r) \xrightarrow{\sigma_r} \cdots \xrightarrow{\sigma_2} (N_1, E_1) \xrightarrow{\sigma_1} (\mathcal{K}^2, 0)$$

We set $\sigma = \sigma_1 \circ \cdots \circ \sigma_r$ and, $\forall j \in \{1, \dots, r\}$, E_j is a simple normal crossing divisor:

$$E_j = E_j^{(1)} \cup E_j^{(2)} \cup \dots \cup E_j^{(j)}$$

where $E_j^{(k)}$ is the strict transform of $E_{j-1}^{(k)}$ (k < j) and $E_j^{(j)}$ is the exceptional divisor of σ_j .

Claim 1: let Q be one of the Q_i . Then, for every $\mathfrak{a} \in E_r^{(1)}$, $\sigma_{\mathfrak{a}}^*(Q) \in \mathcal{K}[\![x_1',x_2']\!][y]$ for some local coordinates (x_1',x_2') at \mathfrak{a} . (Jung-Abhyankar Theorem)

Claim 1: let Q be one of the Q_i . Then, for every $\mathfrak{a} \in E_r^{(1)}$, $\sigma_{\mathfrak{a}}^*(Q) \in \mathcal{K}[\![x_1',x_2']\!][y]$ for some local coordinates (x_1',x_2') at \mathfrak{a} . (Jung-Abhyankar Theorem)

Claim 2: Assume that $\sigma_{\mathfrak{a}_0}^*(Q_i)$ admits a temperate factor for some $\mathfrak{a}_0 \in E_r^{(1)}$. Then $Q_i \in \mathbb{P}\{\{x\}\}[y]$.

Claim 1: let Q be one of the Q_i . Then, for every $\mathfrak{a} \in E_r^{(1)}$, $\sigma_{\mathfrak{a}}^*(Q) \in \mathcal{K}[\![x_1',x_2']\!][y]$ for some local coordinates (x_1',x_2') at \mathfrak{a} . (Jung-Abhyankar Theorem)

Claim 2: Assume that $\sigma_{\mathfrak{a}_0}^*(Q_i)$ admits a temperate factor for some $\mathfrak{a}_0 \in E_r^{(1)}$. Then $Q_i \in \mathbb{P}\{\!\{x\}\!\}[y]$.

If r=1: ok

Claim 1: let Q be one of the Q_i . Then, for every $\mathfrak{a} \in E_r^{(1)}$, $\sigma_{\mathfrak{a}}^*(Q) \in \mathcal{K}[\![x_1',x_2']\!][y]$ for some local coordinates (x_1',x_2') at \mathfrak{a} . (Jung-Abhyankar Theorem)

Claim 2: Assume that $\sigma_{\mathfrak{a}_0}^*(Q_i)$ admits a temperate factor for some $\mathfrak{a}_0 \in E_r^{(1)}$. Then $Q_i \in \mathbb{P}\{\{x\}\}[y]$.

If r=1: ok

Proof by induction on (r, k):

r = number of blowups $P \text{ has a temperate factor at } \mathfrak{a} \in E_r^{(k)}$