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Images of algebraic maps

I Chevalley Theorem. If F : Cn −→ Cp is a polynomial map, and X ⊂ Cn
is algebraic then F (X) is constructible.

I A constructible set is a finite union of sets of the following form:

{x ∈ Cp | P1(x) = · · · = P`(x) = 0 and Q(x) 6= 0}.

I In particular the dimension of F (X) equals the dimension of its Zariski
closure F (X):

dim(F (X)) = dim(F (X)) ≤ dim(X).
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What about the analytic case?

I Theorem (Remmert - 1957): If Φ : X −→ Y is a complex analytic map
between complex analytic sets that is proper, then Φ(X) is complex
analytic.

I (Osgood - 1916) Let Φ : C2 −→ C3 with Φ(u, v) = (u, uv, uev).
Then the Zariski closure of Φ(C2) equals C3.

Therefore, Φ(C2) is not analytic.



What about the analytic case?

I Theorem (Remmert - 1957): If Φ : X −→ Y is a complex analytic map
between complex analytic sets that is proper, then Φ(X) is complex
analytic.

I (Osgood - 1916) Let Φ : C2 −→ C3 with Φ(u, v) = (u, uv, uev).

Then the Zariski closure of Φ(C2) equals C3.

Therefore, Φ(C2) is not analytic.



What about the analytic case?

I Theorem (Remmert - 1957): If Φ : X −→ Y is a complex analytic map
between complex analytic sets that is proper, then Φ(X) is complex
analytic.

I (Osgood - 1916) Let Φ : C2 −→ C3 with Φ(u, v) = (u, uv, uev).
Then the Zariski closure of Φ(C2) equals C3.

Therefore, Φ(C2) is not analytic.



What about the analytic case?

I Theorem (Remmert - 1957): If Φ : X −→ Y is a complex analytic map
between complex analytic sets that is proper, then Φ(X) is complex
analytic.

I (Osgood - 1916) Let Φ : C2 −→ C3 with Φ(u, v) = (u, uv, uev).
Then the Zariski closure of Φ(C2) equals C3.

Therefore, Φ(C2) is not analytic.



Ranks of an analytic map
I When Φ : (Cp, 0) −→ (Cn, 0) is analytic, we denote by r(Φ) the generic

rank of the Jacobian matrix of Φ.

I Then Φ induces Φ∗ : C{x1, . . . , xn} −→ C{u1, . . . , up}.
We define

rA(Φ) = dim
(
C{x1, . . . , xn}

/
Ker(Φ∗)

)
.

I We also have Φ̂∗ : CJx1, . . . , xnK −→ CJu1, . . . , upK.

rF (Φ) = dim
(
CJx1, . . . , xnK

/
Ker(Φ̂∗)

)
.

We always have r(Φ) ≤ rF (Φ) ≤ rA(Φ)
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Analytic vs formal category: Gabrielov’s Example (1973)

Answering a question of Grothendieck, Gabrielov provides an example of a
morphism

ψ : C{x1, x2, x3, x4} −→ C{u, v}

with
r(ψ) = 2 < rF (ψ) = 3 < rA(ψ) = 4



Gabrielov’s rank Theorem (1975):

r(Φ) = rF (Φ) =⇒ rF (Φ) = rA(Φ)

I Question: Can we extend this result to a more general (and algebraic)
setting?
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Weierstrass temperate families

We fix an uncountable algebraically closed field of characteristic zero K.
For every n ∈ N, K{{x1, . . . , xn}} is a K-subalgebra of KJx1, . . . , xnK.

I (Weierstrass division) K{{x1, . . . xn}} satisfies the Weierstrass division
Theorem.

I (Stability under blow-down) For f ∈ KJx1, . . . , xnK

f(x1, . . . , xn−1, x1xn) ∈ K{{x}} =⇒ f ∈ K{{x}}.

I (Stability under hyperplane sections) For f ∈ KJxK \ K{{x}}, the set

{λ ∈ K | f(x1, . . . , xn−1, λx1) ∈ K{{x}}}

is at most countable.
I (”Temperateness”): Let γ(t) be algebraic of degree d over K[t]. Let
a1(t, z), . . . , ad(t, z) ∈ K[t]JzK. Then

ad(t, z) + ad−1(t, z)γ(t) + · · ·+ a1(t, z)γ(t)d−1 ∈ K{{t, z}}

=⇒ ai(t, z) ∈ K{{t, z}}.
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Rank Theorem (Belotto, Curmi, R., 2022):

Let
ϕ : K{{x1, . . . , xn}} −→ K{{u1, . . . , up}}

be a morphism of temperate power series rings. Then

r(Φ) = rF (Φ) =⇒ rF (Φ) = rT (Φ).



Examples of Weierstrass temperate families:

(i) The family of convergent power series (C{x1, . . . , xn})n∈N.

(ii) The family of convergent power series (Cp{x1, . . . , xn})n∈N.

(iii) The family of algebraic power series (K〈x1, . . . , xn〉)n∈N.

(iv) (Eisenstein series) Let A be a UFD containing an uncountable
characteristic zero field.

K = fraction field of A

Then
K{{x1, . . . , xn}} :=

⋃
f∈A\{0}

Af Jx1, . . . , xnK

defines a Weierstrass temperate family.
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Strategy of proof (1)

We may reduce to the case ψ : K{{x1, x2, y}} −→ K{{u, v}} is such that

r(ψ) = rF (ψ) = 2

and Ker(ψ̂) is generated by one irreducible monic polynomial
P (x, y) ∈ KJxK[y].

Moreover we may assume that

ψ : (x1, x2, y) 7−→ (u, uv, f(u, v))

for some f(u, v) ∈ K{{u, v}}.
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A bit of algebra: roots of polynomials with power series coefficients

We denote by PJxK the set of series of the form

∞∑
k=0

ak(x)
b(x)αk+β

where the ak and b are homogeneous polynomials, the total degree of
ak(x)

b(x)αk+β is k, and α, β ∈ N.

• Theorem (Tougeron 90): If P (x, y) ∈ KJxK[y] is a monic polynomial in y,
then its roots can be expressed as

A0 +A1γ +A2γ
2 + · · ·+Ad−1γ

d−1

where the Ai ∈ PJxK, and γ is a homogeneous function.
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Roots of polynomials with temperate power series coefficients

We denote by P{{x}} the set of series of the form

∞∑
k=0

ak(x)
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such that
∑

k
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Behaviour under blowups where n = 2
Let A =

∑∞
k=0

ak(x)
b(x)αk+β ∈ PJxK.

Let σ : (N,E) −→ (K2, 0) be the blowup of the origin. And let a ∈ E not
on the strict transform of {b = 0}.

Up to some linear change of coordinates, we may assume that
σ∗a : g(x1, x2) 7−→ g(u, uv).

I Then σ∗a(A) is a power series.

I Moreover σ∗a(A) ∈ K{{u, v}} iff A ∈ P{{x}}.
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Strategy of proof (2)
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Moreover P (x1, x2, y) ∈ KJxK[y] is an (irreducible) generator of Ker(ψ̂).

We will prove that P ∈ K{{x}}[y].

P = Q1 · · ·Qs where the Qi are irreducible monic polynomials in PJxK[y].

And each Qi =
∏ri
j=1(y − ξi(x, γi,j)) and the γi,j are the conjugates of

some homogeneous element γi.

By assumption, P
(
x1, x2, f

(
x1,

x2

x1

))
= 0
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j=1(y − ξi(x, γi,j)) and the γi,j are the conjugates of

some homogeneous element γi.

By assumption, P
(
x1, x2, f

(
x1,

x2

x1

))
= 0
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Strategy of proof (3)

After one blowup σ1, σ∗1a(P ) has a temperate root at some point a ∈ E1
because

P (u, uv, f(u, v)) = 0

We make more blowups in order to insure that ∆yPb is normal crossing
at every point b of the exceptional divisor.

(Nr, Er)
σr // · · ·

σ2 // (N1, E1)
σ1 // (K2, 0)

We set σ = σ1 ◦ · · · ◦ σr and, ∀j ∈ {1, . . . , r}, Ej is a simple normal
crossing divisor:

Ej = E
(1)
j ∪ E

(2)
j ∪ · · · ∪ E

(j)
j

where E(k)
j is the strict transform of E(k)

j−1 (k < j) and E(j)
j is the

exceptional divisor of σj .
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Strategy of proof (4)

Claim 1: let Q be one of the Qi. Then, for every a ∈ E(1)
r ,

σ∗a(Q) ∈ KJx′1, x′2K[y] for some local coordinates (x′1, x′2) at a.
(Jung-Abhyankar Theorem)

Claim 2: Assume that σ∗a0 (Qi) admits a temperate factor for some
a0 ∈ E(1)

r . Then Qi ∈ P{{x}}[y].

If r = 1: ok

Proof by induction on (r, k):

r = number of blowups

P has a temperate factor at a ∈ E(k)
r
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